login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A190159 Number of peakless Motzkin paths of length n and having no uhh...hd's starting at level 0, where u = (1, 1), h = (1, 0) and d = (1, -1). 2
1, 1, 1, 1, 1, 2, 6, 17, 44, 107, 252, 588, 1376, 3245, 7717, 18485, 44535, 107796, 261937, 638673, 1562105, 3831655, 9423580, 23233536, 57412612, 142174255, 352770105, 876922947, 2183621209, 5446177428, 13603846132, 34028890577, 85234251090, 213760737693, 536733871490, 1349210120198 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

Can be easily expressed using RNA secondary structure terminology.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

FORMULA

a(n) = A098071(n,0).

G.f.=G=G(z) satisfies aG^2 + bG + c = 0, where a=z^2*(1-z-z^2+2z^3), b=-(1-z)(1-2z+2z^2+z^3), c=(1-z)^2.

G.f.: ((1 - x)/(2*x^2*(1 - x - x^2 + 2*x^3)))*(1 - 2*x + 2*x^2 + x^3 - sqrt((1 - 2*x + 2*x^2 + x^3)^2 - 4*x^2*(1 - x - x^2 + 2*x^3))). - G. C. Greubel, Oct 22 2018

EXAMPLE

a(5)=2 because among the 8 (=A004148(5)) peakless Motzkin paths of length 5 only hhhhh and uuhdd have no subword of type uhh...hd starting at level 0.

MAPLE

eq := z^2*(-z^2+2*z^3-z+1)*G^2-(1-z)*(z^3+2*z^2-2*z+1)*G+(1-z)^2 = 0: g := RootOf(eq, G): Gser := series(g, z=0, 40): seq(coeff(Gser, z, n), n=0..35);

MATHEMATICA

With[{a = x^2*(1 - x - x^2 + 2*x^3)}, CoefficientList[Series[((1 - x)/(2*a))*(1 - 2*x + 2*x^2 + x^3 - Sqrt[(1 - 2*x + 2*x^2 + x^3)^2 - 4*a]), {x, 0, 40}], x]] (* G. C. Greubel, Oct 22 2018 *)

PROG

(PARI) x='x+O('x^40); Vec(((1-x)/(2*x^2*(1-x-x^2+2*x^3)))*(1-2*x+2*x^2 + x^3 - sqrt((1-2*x+2*x^2+x^3)^2 -4*x^2*(1-x-x^2+2*x^3)))) \\ G. C. Greubel, Oct 22 2018

(MAGMA) m:=40; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!(((1 -x)/(2*x^2*(1 -x -x^2 +2*x^3)))*(1 -2*x +2*x^2 +x^3 -Sqrt((1-2*x+2*x^2 + x^3)^2 -4*x^2*(1 -x -x^2 +2*x^3))))); // G. C. Greubel, Oct 22 2018

CROSSREFS

Cf. A098071, A004148

Sequence in context: A130104 A019439 A018024 * A000996 A020963 A065068

Adjacent sequences:  A190156 A190157 A190158 * A190160 A190161 A190162

KEYWORD

nonn

AUTHOR

Emeric Deutsch, May 05 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 19 11:10 EDT 2019. Contains 321329 sequences. (Running on oeis4.)