login
Numbers 1 through 10000 sorted lexicographically in octal representation (base 8).
7

%I #15 Jun 18 2017 13:46:27

%S 1,8,64,512,4096,4097,4098,4099,4100,4101,4102,4103,513,4104,4105,

%T 4106,4107,4108,4109,4110,4111,514,4112,4113,4114,4115,4116,4117,4118,

%U 4119,515,4120,4121,4122,4123,4124,4125,4126,4127,516,4128,4129,4130,4131,4132

%N Numbers 1 through 10000 sorted lexicographically in octal representation (base 8).

%C A190131 = inverse permutation: a(A190131(n)) = A190131(a(n)) = n;

%C a(n) <> n for n > 1.

%H Reinhard Zumkeller, <a href="/A190130/b190130.txt">Table of n, a(n) for n = 1..10000</a> (full sequence)

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LexicographicOrder.html">Lexicographic Order</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Octal.html">Octal</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Lexicographical_order">Lexicographical order</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Octal">Octal</a>

%e a(10) = 4101 -> 10005 [oct];

%e a(11) = 4102 -> 10006 [oct];

%e a(12) = 4103 -> 10007 [oct];

%e a(13) = 513 -> 1001 [oct];

%e a(14) = 4104 -> 10010 [oct];

%e a(15) = 4105 -> 10011 [oct];

%e a(16) = 4106 -> 10012 [oct];

%e largest term a(67151) = 10000 -> 23420 [oct];

%e last term a(10000) = 4095 -> 7777 [oct], largest term lexicographically.

%o (Haskell)

%o import Data.Ord (comparing)

%o import Data.List (sortBy)

%o a190130 n = a190130_list !! (n-1)

%o a190130_list = sortBy (comparing (show . a007094)) [1..10000]

%Y A007094; A190126 (base 2), A190128 (base 3), A190016 (base 10), A190132 (base 12), A190134 (base 16).

%K nonn,base,fini,full

%O 1,2

%A _Reinhard Zumkeller_, May 06 2011