login
A190108
Numbers with prime factorization p*q*r^3*s^3 (where p, q, r, s are distinct primes).
6
7560, 11880, 14040, 16632, 18360, 19656, 20520, 21000, 24840, 25704, 28728, 30888, 31320, 33000, 33480, 34776, 39000, 39960, 40392, 41160, 43848, 44280, 45144, 46440, 46872, 47250, 47736, 50760, 51000, 53352, 54648, 55944, 57000, 57240, 61992, 63720, 64584
OFFSET
1,1
COMMENTS
A050326(a(n)) = 11. - Reinhard Zumkeller, May 03 2013
EXAMPLE
From Petros Hadjicostas, Oct 26 2019: (Start)
a(1) = (2^3)*(3^3)*5*7 = 7560;
a(2) = (2^3)*(3^3)*5*11 = 11880;
a(3) = (2^3)*(3^3)*5*13 = 14040;
a(4) = (2^3)*(3^3)*7*11 = 16632.
(End)
MATHEMATICA
f[n_]:=Sort[Last/@FactorInteger[n]]=={1, 1, 3, 3}; Select[Range[150000], f]
PROG
(PARI) list(lim)=my(v=List(), t1, t2, t3); forprime(p=2, sqrtnint(lim\120, 3), t1=p^3; forprime(q=2, sqrtnint(lim\(6*t1), 3), if(q==p, next); t2=q^3*t1; forprime(r=2, lim\(2*t2), if(r==p || r==q, next); t3=r*t2; forprime(s=2, lim\t3, if(s==p || s==q || s==r, next); listput(v, t3*s))))); Set(v) \\ Charles R Greathouse IV, Aug 25 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Name edited by Petros Hadjicostas, Oct 26 2019
STATUS
approved