The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A190061 a(n) = n + [n*r/t] + [n*s/t];  r=1, s=sin(pi/5), t=csc(pi/5). 3

%I

%S 1,3,5,7,8,11,13,14,17,18,20,23,24,26,28,30,31,34,36,37,40,41,43,46,

%T 47,49,51,53,56,57,59,61,63,64,67,69,70,73,74,76,79,80,82,84,86,88,90,

%U 92,93,96,97,99,102,103,106,107,109,112,113,115,117,119,121,123,125,126,129,130,132,135,136,138,140,142,144

%N a(n) = n + [n*r/t] + [n*s/t]; r=1, s=sin(pi/5), t=csc(pi/5).

%C See A190059.

%H G. C. Greubel, <a href="/A190061/b190061.txt">Table of n, a(n) for n = 1..10000</a>

%F A190059: a(n) = n + [n*sin(pi/5)] + [n*csc(pi/5].

%F A190060: b(n) = n + [n*csc(pi/5)] + [n*(csc(pi/5))^2].

%F A190061: c(n) = n + [n*sin(pi/5)] + [n*(sin(pi/5))^2].

%t r=1; s=Sin[Pi/5]; t=Csc[Pi/5];

%t a[n_] := n + Floor[n*s/r] + Floor[n*t/r];

%t b[n_] := n + Floor[n*r/s] + Floor[n*t/s];

%t c[n_] := n + Floor[n*r/t] + Floor[n*s/t];

%t Table[a[n], {n, 1, 120}] (*A190059*)

%t Table[b[n], {n, 1, 120}] (*A190060*)

%t Table[c[n], {n, 1, 120}] (*A190061*)

%o (PARI) for(n=1,30, print1(n + floor(n*sin(Pi/5)) + floor(n*(sin(Pi/5))^2), ", ")) \\ _G. C. Greubel_, Jan 10 2018

%o (MAGMA) C<i> := ComplexField(); [n + Floor(n*Sin(Pi(C)/5)) + Floor(n*(Sin(Pi(C)/5))^2): n in [1..30]]; // _G. C. Greubel_, Jan 10 2018

%Y Cf. A190059, A190060.

%K nonn

%O 1,2

%A _Clark Kimberling_, May 04 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 02:36 EST 2020. Contains 338780 sequences. (Running on oeis4.)