This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A190050 Expansion of ((1-x)*(3*x^2-3*x+1))/(1-2*x)^3 3
 1, 2, 6, 17, 46, 120, 304, 752, 1824, 4352, 10240, 23808, 54784, 124928, 282624, 634880, 1417216, 3145728, 6946816, 15269888, 33423360, 72876032, 158334976, 342884352, 740294656, 1593835520, 3422552064 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The second left hand column of triangle A175136. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (6,-12,8). FORMULA G.f.: ((1-x)*(3*x^2-3*x+1))/(1-2*x)^3. a(n) = (n^2 + 5*n + 10)*2^(n-4) for n >=1 with a(0)=1. a(n) = A001788(n+1) -4*A001788(n) +6*A001788(n-1) -3*A001788(n-2) for n >=1 with a(0)=1. MAPLE A190050:= proc(n) option remember; if n=0 then A190050(n):=1: else A190050(n):=(n^2+5*n+10)*2^(n-4) fi: end: seq (A190050(n), n=0..26); MATHEMATICA Join[{1}, LinearRecurrence[{6, -12, 8}, {2, 6, 17}, 30]] (* or *) CoefficientList[Series[((1-x)*(3*x^2-3*x+1))/(1-2*x)^3, {x, 0, 50}], x] (* G. C. Greubel, Jan 10 2018 *) PROG (PARI) x='x+O('x^30); Vec(((1-x)*(3*x^2-3*x+1))/(1-2*x)^3) \\ G. C. Greubel, Jan 10 2018 (PARI) for(n=0, 30, print1(if(n==0, 1, (n^2 + 5*n + 10)*2^(n-4)), ", ")) \\ G. C. Greubel, Jan 10 2018 (MAGMA) [1] cat [(n^2 + 5*n + 10)*2^(n-4): n in [1..30]]; // G. C. Greubel, Jan 10 2018 CROSSREFS Cf. A175136, A011782, A190951. Related to A001788. Sequence in context: A268655 A316591 A222115 * A005592 A102403 A278428 Adjacent sequences:  A190047 A190048 A190049 * A190051 A190052 A190053 KEYWORD nonn,easy AUTHOR Johannes W. Meijer, May 06 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 18 01:04 EDT 2019. Contains 326059 sequences. (Running on oeis4.)