login
A190037
Number of nondecreasing arrangements of n+2 numbers in 0..5 with the last equal to 5 and each after the second equal to the sum of one or two of the preceding three.
1
8, 12, 16, 23, 33, 45, 57, 69, 81, 93, 105, 117, 129, 141, 153, 165, 177, 189, 201, 213, 225, 237, 249, 261, 273, 285, 297, 309, 321, 333, 345, 357, 369, 381, 393, 405, 417, 429, 441, 453, 465, 477, 489, 501, 513, 525, 537, 549, 561, 573, 585, 597, 609, 621, 633, 645
OFFSET
1,1
COMMENTS
Column 5 of A190041.
LINKS
FORMULA
Empirical: a(n) = 12*n - 27 for n>4.
Empirical: G.f.: x*(8 - 4*x + 3*x^3 + 3*x^4 + 2*x^5) / (1 - x)^2. a(n) = 2*a(n-1) - a(n-2) for n>2. - Colin Barker, May 04 2018
EXAMPLE
All solutions for n=3:
..5....1....2....1....1....4....1....0....1....1....1....2....3....2....1....1
..5....5....3....2....2....5....2....5....4....3....2....3....5....5....1....4
..5....5....5....3....3....5....3....5....4....4....2....3....5....5....2....5
..5....5....5....3....4....5....5....5....5....5....3....5....5....5....3....5
..5....5....5....5....5....5....5....5....5....5....5....5....5....5....5....5
CROSSREFS
Cf. A190041.
Sequence in context: A078609 A084809 A186407 * A110558 A298703 A273800
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 04 2011
STATUS
approved