The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A189995 The order b_{4n-1} of the cyclic group S_{4n-1}^{bp} of oriented diffeomorphism classes of smooth homotopy (4n-1)-spheres that bound parallelizable manifolds, for n > 1. 3
 28, 992, 8128, 261632, 1448424448, 67100672, 1941802827776, 753623571759104, 23998307331473408, 341653284209033216, 8316321134799694594048, 740764429532373450752, 30559446583872811817762816, 496669433444154134078771167232, 17776484020396435145889494859776, 11188223110510348416175908585472 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS For a(n), Milnor 2011 Theorem 5 gives the formula 2^(2*n-2)*(2^(2*n-1)-1)*numerator(4*bernoulli(n)/n) where bernoulli(n) = abs(Bernoulli(2*n)). See A001676 for additional comments, references, and links. LINKS G. C. Greubel, Table of n, a(n) for n = 2..235 John W. Milnor, Differential Topology Forty-six Years Later, Notices Amer. Math. Soc. 58 (2011), 804-809 (see Theorem 5 and Table 3). John W. Milnor, Spheres, Abel Prize lecture (video), 2011. FORMULA a(n) = 2^(2*n - 2) * (2^(2*n - 1) - 1) * abs(numerator(4*Bernoulli(2*n)/n)). a(n) = A187595(4*n-1) for n > 1. EXAMPLE a(2) = 2^2 * (2^3 - 1) * abs(numerator(4 * Bernoulli(4)/2)) = 4 * 7 * abs(numerator(2 * (-1/30)) = 28 MATHEMATICA Table[2^(2*n-2)*(2^(2*n-1)-1)*Abs[Numerator[4*BernoulliB[2*n]/n]], {n, 2, 17}] PROG (MAGMA) [2^(2*n-2)*(2^(2*n-1)-1)*Abs(Numerator(4*Bernoulli(2*n)/n)): n in [2..30]]; // G. C. Greubel, Jan 11 2018 CROSSREFS Cf. A001676, A047680, A057617, A187595, A228689. Sequence in context: A097579 A091549 A034904 * A228689 A218480 A162006 Adjacent sequences:  A189992 A189993 A189994 * A189996 A189997 A189998 KEYWORD nonn AUTHOR Jonathan Sondow, Jun 15 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 22:42 EST 2021. Contains 349567 sequences. (Running on oeis4.)