This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A189970 Decimal expansion of (1 + x + sqrt(14+10x))/4, where x=sqrt(5). 9
 2, 3, 1, 6, 5, 1, 2, 4, 2, 9, 1, 7, 3, 1, 3, 2, 3, 3, 0, 4, 5, 1, 6, 1, 3, 2, 1, 1, 6, 1, 7, 8, 2, 3, 3, 7, 6, 2, 4, 5, 7, 9, 3, 7, 3, 8, 5, 8, 1, 3, 8, 7, 0, 8, 1, 8, 9, 4, 0, 6, 4, 3, 0, 5, 4, 4, 0, 2, 7, 5, 9, 2, 1, 4, 3, 8, 5, 9, 8, 8, 7, 1, 3, 3, 7, 3, 0, 9, 4, 5, 7, 6, 8, 2, 5, 5, 4, 8, 1, 5, 4, 7, 2, 0, 1, 4, 5, 2, 5, 1, 1, 1, 5, 3, 5, 2, 6, 9, 8, 2 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Let R denote a rectangle whose shape (i.e., length/width) is (1 + x + sqrt(14+10x))/4, where x=sqrt(5)).  This rectangle can be partitioned into golden rectangles and squares in a manner that matches the periodic continued fraction [r,1,r,1,r,1,r,1,...]. It can also be partitioned into squares so as to match the nonperiodic continued fraction [2,3,6,3,...] at A189971. For details, see A188635. Decimal expansion of sqrt(r + r*sqrt(r + r*sqrt(r + ...))), where r = (1 + sqrt(5))/2 = golden ratio. - Ilya Gutkovskiy, Aug 24 2015 A quartic integer. - Charles R Greathouse IV, Aug 29 2015 LINKS MATHEMATICA r = (1 + 5^(1/2))/2; FromContinuedFraction[{r, 1, {r, 1}}] FullSimplify[%] ContinuedFraction[%, 100]  (* A189971 *) RealDigits[N[%%, 120]]     (* A189970 *) N[%%%, 40] RealDigits[(1+Sqrt[5]+Sqrt[14+10Sqrt[5]])/4, 10, 120][[1]] (* Harvey P. Dale, Sep 24 2015 *) PROG (PARI) default(realprecision, 1000); x=sqrt(5); (1+x+sqrt(14+10*x))/4 \\ Anders HellstrÃ¶m, Aug 24 2015 (PARI) polrootsreal(x^4-x^3-2*x^2-2*x-1)[2] \\ Charles R Greathouse IV, Aug 29 2015 CROSSREFS Cf. A188635, A001622, A189971, A190157. Sequence in context: A173161 A116468 A110237 * A076631 A035485 A074306 Adjacent sequences:  A189967 A189968 A189969 * A189971 A189972 A189973 KEYWORD nonn,cons AUTHOR Clark Kimberling, May 05 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.