login
Table, read by rows, of the number of quivers of type Ã_(n-1) according to the parameter k (n >= 2, 1 <= k <= [n/2]).
0

%I #29 Jan 19 2022 14:30:39

%S 1,2,5,4,14,12,42,36,22,132,108,100,429,349,315,172,1430,1144,1028,

%T 980,4862,3868,3432,3240,1651,16796,13260,11700,10920,10584,58786,

%U 46210,40520,37556,36036,18028,208012,162792,142120,130900,124740,121968

%N Table, read by rows, of the number of quivers of type Ã_(n-1) according to the parameter k (n >= 2, 1 <= k <= [n/2]).

%C Table 1, p. 15 of Bastian.

%C There is a bijection with dissections of an annulus [Hermund André Torkildsen]. - _N. J. A. Sloane_, Jan 31 2013

%D Francois Bergeron, Gilbert Labelle and Pierre Leroux, Combinatorial species and tree-like structures, Encyclopedia of Mathematics and its Applications, vol. 67, Cambridge University Press, Cambridge, 1998, Translated from the 1994 French original by Margaret Readdy, With a foreword by Gian-Carlo Rota.

%H Ibrahim Assem, Thomas Brustle, Gabrielle Charbonneau-Jodoin and Pierre-Guy Plamondon, <a href="http://arxiv.org/abs/0903.3347">Gentle algebras arising from surface triangulations</a>, Algebra & Number Theory 4 (2010), no. 2, 201-229; arXiv:0903.3347 [math.RT], 2009.

%H Janine Bastian, Thomas Prellberg, Martin Rubey and Christian Stump, <a href="http://arxiv.org/abs/0906.0487">Counting the number of elements in the mutation classes of Ã_n-quivers</a>, arXiv:0906.0487 [math.CO], 2009-2011.

%H Janine Bastian, <a href="http://arxiv.org/abs/0901.1515">Mutation classes of Ã_n-quivers and derived equivalence classification of cluster tilted algebras of type Ã_n</a>, Algebra Number Theory 5 (2011), no. 5, 567-594; arXiv:0901.1515 [math.RT], 2009-2012.

%H Hermund André Torkildsen, <a href="http://arxiv.org/abs/1208.2138">A geometric realization of the m-cluster category of type Ã</a>, arXiv 1208.2138 [math.RT], 2012. - From _N. J. A. Sloane_, Jan 31 2013

%e The table begins

%e ===================================

%e n | r=1 | r=2 | r=3 | r=4 | r=5 |

%e ===================================

%e n=2 1

%e n=3 2

%e n=4 5 4

%e n=5 14 12

%e n=6 42 36 22

%e n=7 132 108 100

%e n=8 429 349 315 172

%e n=9 1430 1144 1028 980

%e n=10 4862 3868 3432 3240 1651

%e ===================================

%t a[r_, r_] := 1/2 (Binomial[2 r, r]/2 + Sum[EulerPhi[k]/(4 r) Binomial[2 r/k, r/k]^2, {k, Divisors@r}]);

%t a[r_, s_] := 1/2 Sum[EulerPhi[k]/(r + s) Binomial[2 r/k, r/k] Binomial[2 s/k, s/k], {k, Intersection[Divisors@r, Divisors@s]}];

%t Table[a[r, n - r], {n, 2, 10}, {r, n/2}] // TableForm

%t (* _Andrey Zabolotskiy_, Jan 19 2022 *)

%Y Cf. A000108 (r=1), A000888 (n=2r+1).

%K nonn,tabf

%O 2,2

%A _Jonathan Vos Post_, May 01 2011

%E Rows 11-13 added by _Andrey Zabolotskiy_, Jan 19 2022