login
A189931
c(n) = n + [n*r/t] + [n*s/t]; r=1, s=sin(2pi/5), t=cos(2pi/5).
3
7, 14, 21, 28, 36, 43, 50, 57, 65, 72, 79, 86, 95, 102, 109, 116, 124, 131, 138, 145, 152, 160, 167, 174, 181, 190, 197, 204, 211, 219, 226, 233, 240, 248, 255, 262, 269, 276, 285, 292, 299, 306, 314, 321, 328, 335, 343, 350, 357, 364, 372, 380, 387, 394, 401, 409, 416, 423, 430, 438, 445, 452, 459, 467, 475, 482, 489, 497, 504, 511, 518, 525, 533, 540, 547, 554, 562
OFFSET
1,1
COMMENTS
See A189929.
LINKS
FORMULA
A189929: a(n) = n + [n*sin(2*pi/5)] + [n*cos(2*pi/5)].
A189930: b(n) = n + [n*csc(2*pi/5)] + [n*cot(2*pi/5)].
A189931: c(n) = n + [n*sec(2*pi/5)] + [n*tan(2*pi/5)].
MATHEMATICA
r=1; s=Sin[2Pi/5]; t=Cos[2Pi/5];
a[n_] := n + Floor[n*s/r] + Floor[n*t/r];
b[n_] := n + Floor[n*r/s] + Floor[n*t/s];
c[n_] := n + Floor[n*r/t] + Floor[n*s/t];
Table[a[n], {n, 1, 120}] (*A189929*)
Table[b[n], {n, 1, 120}] (*A189930*)
Table[c[n], {n, 1, 120}] (*A189931*)
PROG
(PARI) for(n=1, 100, print1(n + floor(n/cos(2*Pi/5)) + floor(n*tan(2*Pi/5)), ", ")) \\ G. C. Greubel, Jan 13 2018
(Magma) C<i> := ComplexField(); [n + Floor(n/Cos(2*Pi(C)/5)) + Floor(n*Tan(2*Pi(C)/5)): n in [1..100]]; // G. C. Greubel, Jan 13 2018
CROSSREFS
Sequence in context: A020334 A044832 A033004 * A164005 A100451 A028555
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 01 2011
STATUS
approved