The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A189931 c(n) = n + [n*r/t] + [n*s/t]; r=1, s=sin(2pi/5), t=cos(2pi/5). 3
 7, 14, 21, 28, 36, 43, 50, 57, 65, 72, 79, 86, 95, 102, 109, 116, 124, 131, 138, 145, 152, 160, 167, 174, 181, 190, 197, 204, 211, 219, 226, 233, 240, 248, 255, 262, 269, 276, 285, 292, 299, 306, 314, 321, 328, 335, 343, 350, 357, 364, 372, 380, 387, 394, 401, 409, 416, 423, 430, 438, 445, 452, 459, 467, 475, 482, 489, 497, 504, 511, 518, 525, 533, 540, 547, 554, 562 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS See A189929. LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 FORMULA A189929:  a(n) = n + [n*sin(2*pi/5)] + [n*cos(2*pi/5)]. A189930:  b(n) = n + [n*csc(2*pi/5)] + [n*cot(2*pi/5)]. A189931:  c(n) = n + [n*sec(2*pi/5)] + [n*tan(2*pi/5)]. MATHEMATICA r=1; s=Sin[2Pi/5]; t=Cos[2Pi/5]; a[n_] := n + Floor[n*s/r] + Floor[n*t/r]; b[n_] := n + Floor[n*r/s] + Floor[n*t/s]; c[n_] := n + Floor[n*r/t] + Floor[n*s/t]; Table[a[n], {n, 1, 120}]  (*A189929*) Table[b[n], {n, 1, 120}]  (*A189930*) Table[c[n], {n, 1, 120}]  (*A189931*) PROG (PARI) for(n=1, 100, print1(n + floor(n/cos(2*Pi/5)) + floor(n*tan(2*Pi/5)), ", ")) \\ G. C. Greubel, Jan 13 2018 (MAGMA) C := ComplexField(); [n + Floor(n/Cos(2*Pi(C)/5)) + Floor(n*Tan(2*Pi(C)/5)): n in [1..100]]; // G. C. Greubel, Jan 13 2018 CROSSREFS Cf. A189929, A189930. Sequence in context: A020334 A044832 A033004 * A164005 A100451 A028555 Adjacent sequences:  A189928 A189929 A189930 * A189932 A189933 A189934 KEYWORD nonn AUTHOR Clark Kimberling, May 01 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 5 09:32 EDT 2020. Contains 334829 sequences. (Running on oeis4.)