login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A189920 Zeckendorf representation of natural numbers. 10
1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1

COMMENTS

The row lengths sequence of this array is A072649(n), n>=1.

Note that the Fibonacci numbers F(0)=0 and F(1)=1 are not used in this unique representation of n>=1. No neighboring Fibonacci numbers are allowed (no 1,1, subsequence in any row n).

T(n,k) = A213676(n, A072649(n, k)-1) for k = 1..A072649(k). - Reinhard Zumkeller, Mar 10 2013

REFERENCES

E. Zeckendorf, Representation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liege 41.3-4 (1972) 179-182 (with the proof from 1939).

R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed.,1994, Addison-Wesley, Reading MA, pp. 295-296.

LINKS

Reinhard Zumkeller, Rows n = 1..1000 of triangle, flattened

FORMULA

n = sum(a(n,m)*F(rl(n)+2-m),m=1..rl(n)), n>=1, with

rl(n):= A072649(n)(row length) and F(n):= A000045(n) (Fibonacci).

EXAMPLE

n=1:  1;

n=2:  1, 0;

n=3:  1, 0, 0;

n=4:  1, 0, 1;

n=5:  1, 0, 0, 0;

n=6:  1, 0, 0, 1;

n=7:  1, 0, 1, 0;

n=8:  1, 0, 0, 0, 0;

n=9:  1, 0, 0, 0, 1;

n=10: 1, 0, 0, 1, 0;

n=11: 1, 0, 1, 0, 0;

n=12: 1, 0, 1, 0, 1;

n=13: 1, 0, 0, 0, 0, 0;

...

1 = F(2),

6 = F(5) + F(2),

11 = F(6) + F(4).

MATHEMATICA

f[n_] := (k = 1; ff = {}; While[(fi = Fibonacci[k]) <= n, AppendTo[ff, fi]; k++]; Drop[ff, 1]); a[n_] := (fn = f[n]; xx = Array[x, Length[fn]]; r = xx /. {ToRules[ Reduce[ And @@ (0 <= # <= 1 & ) /@ xx && fn . xx == n, xx, Integers]]}; Reverse[ First[ Select[ r, FreeQ[ Split[#], {1, 1, ___}] & ]]]); Flatten[ Table[ a[n], {n, 1, 25}]] (* Jean-Fran├žois Alcover, Sep 29 2011 *)

PROG

(Haskell)

a189920 n k = a189920_row n !! k

a189920_row n = z n $ reverse $ takeWhile (<= n) $ tail a000045_list where

   z x (f:fs'@(_:fs)) | f == 1 = if x == 1 then [1] else []

                      | f == x = 1 : replicate (length fs) 0

                      | f < x  = 1 : 0 : z (x - f) fs

                      | f > x  = 0 : z x fs'

a189920_tabf = map a189920_row [1..]

-- Reinhard Zumkeller, Mar 10 2013

CROSSREFS

Cf. A035517, A014417.

Sequence in context: A257234 A266666 A190191 * A275661 A266716 A190242

Adjacent sequences:  A189917 A189918 A189919 * A189921 A189922 A189923

KEYWORD

nonn,easy,tabf,base

AUTHOR

Wolfdieter Lang, Jun 12 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified October 20 17:39 EDT 2017. Contains 293648 sequences.