

A189825


Least number k such that d(k1) + d(k+1) = n, where d(k) is the number of divisors of k.


2



2, 4, 3, 14, 5, 7, 15, 11, 17, 19, 35, 29, 65, 41, 101, 79, 143, 71, 197, 161, 323, 169, 2917, 181, 577, 239, 575, 629, 899, 419, 1297, 701, 901, 721, 25599, 881, 5183, 1121, 9215, 2351, 4901, 1079, 107585, 1681, 36863, 2159, 3601, 2881, 11663, 2519
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

3,1


COMMENTS

The function d(k1) + d(k+1) is a measure of the compositeness of the numbers next to k. There is no k for n=1 and n=2. Some terms can be quite large; for example, a(99) = 6533135.


LINKS

Donovan Johnson, Table of n, a(n) for n = 3..880


FORMULA

Least k such that A189827(k) = n.


MATHEMATICA

nn = 100; t = Table[1, {nn}]; t[[1]] = t[[2]] = 0; cnt = 2; n = 1; While[cnt < nn, n++; s = DivisorSigma[0, n1] + DivisorSigma[0, n+1]; If[s <= nn && t[[s]] == 1, t[[s]] = n; cnt++]]; Drop[t, 2]


CROSSREFS

Cf. A175144.
Sequence in context: A200715 A297901 A079308 * A271878 A259476 A271363
Adjacent sequences: A189822 A189823 A189824 * A189826 A189827 A189828


KEYWORD

nonn


AUTHOR

T. D. Noe, Apr 28 2011


STATUS

approved



