login
A189740
Partial sums of tetranacci numbers (A000288).
0
1, 2, 3, 4, 8, 15, 28, 53, 102, 196, 377, 726, 1399, 2696, 5196, 10015, 19304, 37209, 71722, 138248, 266481, 513658, 990107, 1908492, 3678736, 7090991, 13668324, 26346541, 50784590, 97890444, 188689897, 363711470, 701076399, 1351368208, 2604845972
OFFSET
1,2
FORMULA
a(1)=1, a(2)=2, a(3)=3, a(4)=4, a(5)=8, a(n)=2*a(n-1)-a(n-5). - Harvey P. Dale, May 23 2011
G.f.: -x*(2*x^3+x^2-1) / ((x-1)*(x^4+x^3+x^2+x-1)). - Colin Barker, Aug 07 2013
MATHEMATICA
Accumulate[LinearRecurrence[{1, 1, 1, 1}, {1, 1, 1, 1}, 50]] (* or *) LinearRecurrence[ {2, 0, 0, 0, -1}, {1, 2, 3, 4, 8}, 50] (* Harvey P. Dale, May 23 2011 *)
CROSSREFS
Cf. A000288.
Sequence in context: A274166 A364595 A352817 * A118841 A126294 A339973
KEYWORD
nonn,easy
AUTHOR
Harvey P. Dale, May 23 2011
STATUS
approved