login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A189722 Number of self-avoiding walks of length n on square lattice such that at each point the angle turns 90 degrees (the first turn is assumed to be to the left - otherwise the number must be doubled). 0

%I

%S 1,2,3,5,8,13,21,34,55,89,141,226,362,580,921,1468,2344,3740,5922,

%T 9413,14978,23829,37686,59770,94882,150606,237947,376784,597063,

%U 946086,1493497,2361970,3737699,5914635,9330438,14741315,23301716,36833270,58071568

%N Number of self-avoiding walks of length n on square lattice such that at each point the angle turns 90 degrees (the first turn is assumed to be to the left - otherwise the number must be doubled).

%C The number of snakes composed of n identical segments such that the snake starts with a left turn and the other (n-2) joints are bent at 90-degree angles, either to the left or to the right, in such a way that the snake does not overlap.

%C Vi Hart came up with this idea of snakes (see the link below).

%H Hart V., <a href="http://vihart.com/blog/how-to-snakes/">How To Snakes</a>

%H IBM Corp., <a href="http://domino.research.ibm.com/Comm/wwwr_ponder.nsf/Challenges/April2011.html">Ponder This</a>

%e For n=2 the a(2)=1 there is only one snake:

%e (0,0), (0,1), (-1,1)

%e For n=3 the a(3)=2 there are two snakes:

%e (0,0), (0,1), (-1,1), (-1,0)

%e (0,0), (0,1), (-1,1), (-1,2)

%e Representing the walk (or snake) as a sequence of turns I and -I in the complex plane, with the initial condition that the first turn is I, for length 2 we have [I], for length 3 we have [I,I], [I,-I], and for length 4 we have [I,I,-I], [I,-I,I], [I,-I,-I].

%p ValidSnake:=proc(P) local S, visited, lastdir, lastpoint, j;

%p S:={0, 1}; lastdir:=1; lastpoint:=1;

%p for j from 1 to nops(P) do lastdir:=lastdir*P[j];

%p lastpoint:=lastpoint+lastdir;

%p S:=S union {lastpoint};

%p od;

%p if (nops(S) = (2+nops(P))) then return(true); else return(false); fi;

%p end;

%p NextList:=proc(L) local S, snake, newsnake;

%p S:={ };

%p for snake in L do

%p newsnake:=[op(snake), I];

%p if ValidSnake(newsnake) then S:=S union {newsnake}; fi;

%p newsnake:=[op(snake), -I];

%p if ValidSnake(newsnake) then S:=S union {newsnake}; fi;

%p od;

%p return(S union { });

%p end;

%p L:={[I]}:

%p for k from 3 to 25 do

%p L:=NextList(L):

%p print(k, nops(L));

%p od:

%p # second Maple program:

%p a:= proc(n) local v, b;

%p v:= proc() true end: v(0, 0), v(0, 1):= false$2:

%p b:= proc(n, x, y, d) local c;

%p if v(x, y) then v(x, y):= false;

%p c:= `if`(n=0, 1,

%p `if`(d=1, b(n-1, x, y+1, 2) +b(n-1, x, y-1, 2),

%p b(n-1, x+1, y, 1) +b(n-1, x-1, y, 1) ));

%p v(x, y):= true; c

%p else 0 fi

%p end;

%p b(n-2, -1, 1, 1)

%p end:

%p seq(a(n), n=2..25); # _Alois P. Heinz_, Jun 10 2011

%K nonn,walk,changed

%O 2,2

%A _Dan Dima_ and _Stephen C. Locke_, Apr 25-26 2011

%E a(33)-a(40) from _Alois P. Heinz_, Jun 10 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 28 01:41 EST 2014. Contains 250286 sequences.