login
Composition of Catalan and Fibonacci numbers.
1

%I #19 Feb 12 2014 02:43:14

%S 1,-1,2,2,-4,3,-5,10,-9,5,14,-28,27,-20,8,-42,84,-84,70,-40,13,132,

%T -264,270,-240,160,-78,21,-429,858,-891,825,-600,351,-147,34,1430,

%U -2860,3003,-2860,2200,-1430,735,-272,55,-4862,9724,-10296,10010,-8008,5577,-3234,1496,-495,89,16796,-33592,35802,-35360,29120,-21294,13377,-7072,2970,-890,144,-58786,117572,-125970,125970,-106080,80444,-53508,30940,-15015,5785,-1584,233

%N Composition of Catalan and Fibonacci numbers.

%C Row sums equal 1 (proof by _Bill Gosper_, Apr 17 2011). Row sums of absolute terms equal A081696.

%D Email of R. W. Gosper on the math-fun mailing list, Apr 17 2011.

%e Table starts

%e 1,

%e -1, 2,

%e 2, -4, 3,

%e -5, 10, -9, 5,

%t Table[(-1)^(k + n) k/(2n - k) Binomial[2n - k, n - k] Fibonacci[k + 1], {n, 12}, {k, n}]

%Y Cf. A081696, A171567, A064310.

%K sign,tabl

%O 1,3

%A _Wouter Meeussen_, Apr 25 2011