login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A189661 Fixed point of the morphism 0->010, 1->10 starting with 0. 11
0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1

COMMENTS

From Michel Dekking, Oct 20 2018: (Start)

Let alpha=(3-sqrt(5))/2 be the 'small golden mean'.

The following two facts follow from Proposition 2 and Theorem 2 in my paper on substitution invariant words.

(I) The sequence {a(n)} is the inhomogeneous Sturmian sequence

    s'(alpha,1-alpha) = (ceiling(n*alpha+1-alpha)-ceiling((n-1)*alpha+1-alpha)).

(II) The other fixed point of 0->010, 1->10 is the inhomogeneous Sturmian sequence

    A289034 = s(alpha,1-alpha) = (floor(n*alpha+1-alpha)-floor((n-1)*alpha+1-alpha)).

a(n) = A289034(n) for all n > 2, but a(1),a(2) = 0,1; A289034(1),A289034(2) = 1,0.

(End)

REFERENCES

Bernardino, André, Rui Pacheco, and Manuel Silva. "Coloring factors of substitutive infinite words." Discrete Mathematics 340.3 (2017): 443-451. See Example 2.

LINKS

Table of n, a(n) for n=1..144.

A. Bernardino, M. Silva, R. Pacheco, Coloring factors of substitutive infinite words, arXiv:1605.09343 [math.CO], 2016.

Michel Dekking, Substitution invariant Sturmian words and binary trees, Integers, Electronic Journal of Combinatorial Number Theory 18A (2018), #A17.

EXAMPLE

0->010->01010010->1001001010010->...

MATHEMATICA

t = Nest[Flatten[# /. {0->{0, 1, 0}, 1->{1, 0}}] &, {0}, 5] (*A189661*)

f[n_] := t[[n]]

Flatten[Position[t, 0]] (*A189662*)

Flatten[Position[t, 1]] (*A026356*)

s[n_] := Sum[f[i], {i, 1, n}]; s[0] = 0;

Table[s[n], {n, 1, 120}] (*A189663*)

CROSSREFS

Cf. A189662, A026356, A189663.

Sequence in context: A285966 A215530 A241422 * A145573 A092202 A285686

Adjacent sequences:  A189658 A189659 A189660 * A189662 A189663 A189664

KEYWORD

nonn

AUTHOR

Clark Kimberling, Apr 25 2011

EXTENSIONS

Name corrected by Michel Dekking, Oct 18 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 04:52 EDT 2019. Contains 327187 sequences. (Running on oeis4.)