OFFSET
1
COMMENTS
Is this a shifted version of A004641? - R. J. Mathar, May 16 2011
The answer is: yes. We have (a(n+1)) = A004641(n), for all n. Let S be the morphism 0->01, 1->001, and let T be the morphism 0->10, 1->100. By definition A004641 is the unique fixed point of T. The equality above is obviously implied by the following claim: for all n it holds that S^n(0)0 = 0T^n(0), and S^n(01)0 = 0T^n(10). Proof: S(0)0 = 010 = 0T(0), and S(01)0 = 010010 = 0T(10). Proceed by induction: S^(n+1)(0)0 = S^n(01)0 = 0T^n(10) = 0T^(n+1)(0) and S^(n+1)(01)0 = S^n(01)S^n(0)S^n(01)0 = 0T^n(10)T^n(0)T^n(10) = 0T^(n+1)(10). - Michel Dekking, Feb 07 2017
(a(n)) is the inhomogeneous Sturmian sequence with slope sqrt(2) - 1 and intercept 1 - sqrt(2)/2. Let psi be the morphism 0->01, 1->001. Then the parameters of the Sturmian sequence can be computed from psi = psi_1 psi_4, where psi_1 is the Fibonacci morphism, and psi_4 is the morphism 0->0, 1->10. See also Example 2 in Komatsu's paper, which considers the square 0->01001, 1->0101001 of psi. - Michel Dekking, Nov 03 2018
Proof of Kimberling's conjecture: one can use Lemma 1 in the Bosma, Dekking, Steiner paper, which gives the positions of 1 in a Sturmian sequence as a Beatty sequence. - Michel Dekking, Nov 03 2018
LINKS
Wieb Bosma, Michel Dekking, Wolfgang Steiner, A remarkable sequence related to Pi and sqrt(2), Integers, Electronic Journal of Combinatorial Number Theory 18A (2018), #A4.
Michel Dekking, Substitution invariant Sturmian words and binary trees, Integers, Electronic Journal of Combinatorial Number Theory 18A (2018), #A17.
Takao Komatsu, Substitution invariant inhomogeneous Beatty sequences, Tokyo J. Math. 22 (1999), 235-243.
FORMULA
a(n) = floor(alpha*n+beta) - floor(alpha*(n-1)+beta), with alpha = sqrt(2)-1, beta = 1-sqrt(2)/2 - Michel Dekking, Nov 03 2018
EXAMPLE
0->01->01001->010010101001->
MATHEMATICA
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Apr 23 2011
STATUS
approved