login
A189545
T(n,k)=Number of arrangements of n+1 nonzero numbers x(i) in -k..k with the sum of trunc(x(i)/x(i+1)) equal to zero
16
0, 4, 4, 12, 8, 0, 24, 28, 44, 12, 40, 72, 192, 152, 0, 60, 152, 544, 964, 552, 40, 84, 264, 1340, 3664, 5416, 2000, 0, 112, 432, 2520, 11276, 26804, 31280, 7628, 140, 144, 660, 4620, 26152, 97836, 204544, 173792, 28440, 0, 180, 968, 7716, 56440, 274132, 911144
OFFSET
1,2
COMMENTS
Table starts
...0......4.......12........24.........40..........60...........84
...4......8.......28........72........152.........264..........432
...0.....44......192.......544.......1340........2520.........4620
..12....152......964......3664......11276.......26152........56440
...0....552.....5416.....26804......97836......274132.......683144
..40...2000....31280....204544.....911144.....3022220......8655424
...0...7628...173792...1526520....8485264....33638540....111406336
.140..28440...977092..11544464...80270588...379997096...1456853916
...0.108792..5562216..87396896..762015216..4324466328..19269747584
.504.411888.31839976.665272176.7245223968.49387377504.256327259704
LINKS
EXAMPLE
Some solutions for n=7 k=5
.-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-4...-5
.-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5
..1...-2...-2...-1....1...-5...-3....4....3...-4....3...-3....3....1...-4....3
..4....4....2...-3...-3....2....5...-1....5....4...-2....4....5...-1....3....3
..1...-1....3....2...-2...-3...-2....5...-5....3....3...-1....4...-2....4....3
.-3...-1...-1...-1...-3....1....5....2...-2....5....5....4....5...-5....3...-4
.-4....4...-1....3...-1...-3...-3....1....5...-2...-5....5....5...-1....4....5
..5....5....4...-1...-2...-1...-3....4...-4...-5...-2....2...-2....3...-3...-2
CROSSREFS
Column 1 is A028329(n/2) for even n
Row 1 is A046092(n-1)
Sequence in context: A272789 A273152 A322785 * A326993 A272990 A273645
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Apr 23 2011
STATUS
approved