login
A189498
T(n,k)=Number of arrangements of n+1 nonzero numbers x(i) in -k..k with the sum of floor(x(i)/x(i+1)) equal to zero
16
0, 2, 4, 6, 12, 0, 12, 38, 42, 12, 20, 78, 152, 136, 0, 30, 148, 462, 928, 550, 40, 42, 240, 1088, 3388, 4920, 1892, 0, 56, 380, 2128, 9394, 24806, 27508, 7384, 140, 72, 554, 3850, 22088, 85480, 182634, 152358, 26816, 0, 90, 788, 6474, 45892, 238836, 787412
OFFSET
1,2
COMMENTS
Table starts
...0......2........6........12.........20..........30...........42...........56
...4.....12.......38........78........148.........240..........380..........554
...0.....42......152.......462.......1088........2128.........3850.........6474
..12....136......928......3388.......9394.......22088........45892........86416
...0....550.....4920.....24806......85480......238836.......567774......1218778
..40...1892....27508....182634.....787412.....2642358......7269852.....17692662
...0...7384...152358...1350418....7250142....29261538.....93830584....260746932
.140..26816...852940..10077438...67449574...326423068...1218634086...3870426602
...0.103288..4796962..75593372..630466648..3664621084..15936391068..57837221756
.504.386928.27117826.569975518.5926141678.41363200538.209537582772.869215927390
LINKS
EXAMPLE
Some solutions for n=7 k=5
.-5...-5...-5...-5...-5...-4...-5...-5...-5...-4...-5...-5...-5...-5...-5...-5
.-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5
..3...-4....5....2....3...-4....4...-4...-3...-5....5....5....1....1....3....3
.-4....3...-4...-3....2...-3....3....5....1...-3...-4....2....4....2....1....2
.-2....2...-1...-4...-1...-5....1....4....1...-4...-2...-5....2....2...-1....5
..4....5...-3....4...-5...-2...-2....3....2...-5....2....3...-5...-4...-5...-5
..3...-2....2....2...-4....5...-4...-1....2....3....3....5...-5...-1....3...-2
..5...-1....5....1...-4...-2....3...-4...-4....4....3....5...-2...-4....3....2
CROSSREFS
Column 1 is A028329(n/2) for even n
Row 1 is A002378(n-1)
Sequence in context: A049914 A056763 A190071 * A129567 A064469 A057700
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Apr 23 2011
STATUS
approved