login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A189479 Fixed point starting with 0 of the morphism 0->01, 1->101. 8
0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1

COMMENTS

Is this a shifted version of A114986 or A096270? - R. J. Mathar, May 16 2011

Response:  A189479(n)=A114986(n-1) for n>=2; this follows from formulas at A099267 (the positions of 1 in A189479) and the fact that A114986 is the characteristic function of the lower Wythoff sequence with 0 prefixed. - Clark Kimberling, May 22 2011

LINKS

Table of n, a(n) for n=1..131.

Index entries for sequences that are fixed points of mappings

EXAMPLE

0->01->01101->0110110101101->

MATHEMATICA

t = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {1, 0, 1}}] &, {0}, 6] (*A189479*)

Flatten[Position[t, 0]] (*A007066*)

Flatten[Position[t, 1]] (*A099267*)

CROSSREFS

Cf. A007066, A099267, A114986.

Sequence in context: A288478 A225183 A082410 * A260394 A181932 A284792

Adjacent sequences:  A189476 A189477 A189478 * A189480 A189481 A189482

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Apr 22 2011

EXTENSIONS

Name clarified by Michel Dekking, Sep 30 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 11 04:33 EDT 2020. Contains 335609 sequences. (Running on oeis4.)