login
A189323
Number of nondecreasing arrangements of n+2 numbers in 0..6 with the last equal to 6 and each after the second equal to the sum of one or two of the preceding four.
1
10, 18, 36, 64, 110, 179, 275, 393, 528, 676, 836, 1008, 1192, 1388, 1596, 1816, 2048, 2292, 2548, 2816, 3096, 3388, 3692, 4008, 4336, 4676, 5028, 5392, 5768, 6156, 6556, 6968, 7392, 7828, 8276, 8736, 9208, 9692, 10188, 10696, 11216, 11748, 12292, 12848
OFFSET
1,1
COMMENTS
Column 6 of A189326.
LINKS
FORMULA
Empirical: a(n) = 6*n^2 + 34*n - 264 for n>8.
Empirical g.f.: x*(10 - 12*x + 12*x^2 + 8*x^4 + 5*x^5 + 4*x^6 - 5*x^7 - 5*x^8 - 4*x^9 - x^10) / (1 - x)^3. - Colin Barker, May 02 2018
EXAMPLE
Some solutions for n=3:
..1....1....2....2....1....3....1....2....2....0....1....1....3....2....1....1
..5....6....3....4....4....6....5....2....4....3....3....3....3....3....5....3
..5....6....3....4....5....6....5....4....4....3....4....3....3....3....6....3
..5....6....6....4....5....6....6....6....6....3....5....4....6....3....6....6
..6....6....6....6....6....6....6....6....6....6....6....6....6....6....6....6
CROSSREFS
Cf. A189326.
Sequence in context: A090995 A363769 A153360 * A064485 A007938 A007937
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 20 2011
STATUS
approved