login
A189314
Nonprimes k such that 2*omega(4k) = omega(4k+2), where omega(j) is the number of distinct primes dividing j, A001221.
2
1, 4, 8, 52, 82, 128, 136, 142, 172, 178, 192, 214, 232, 262, 292, 304, 332, 346, 352, 382, 388, 412, 448, 472, 478, 484, 500, 502, 542, 556, 586, 592, 604, 622, 632, 640, 652, 676, 712, 724, 752, 766, 772, 802, 808, 832, 838, 841, 862, 864, 916, 922, 934
OFFSET
1,2
LINKS
MAPLE
Omega:=proc(n)return nops(factorset(n)):end:for n from 1 to 1000 do
if(not isprime(n) and 2*Omega(4*n)=Omega(4*n+2))then printf("%d, ", n); fi:od: # Nathaniel Johnston, Apr 19 2011
MATHEMATICA
Select[Range[1000], ! PrimeQ[#] && 2*PrimeNu[4 #] == PrimeNu[4 # + 2] &] (* T. D. Noe, Apr 21 2011 *)
CROSSREFS
Cf. A189313 (prime version of this sequence).
Sequence in context: A329942 A056397 A369074 * A358791 A215746 A128893
KEYWORD
nonn
AUTHOR
STATUS
approved