login
A189301
Zero-one sequence based on A026147: a(A026147(k))=a(k); a(A181155(k))=1-a(k), a(1)=0.
3
0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1
OFFSET
1
COMMENTS
First, the sequences of odd and even positive integers are used to generate the Thue-Morse sequence A010060, in which the positions of 0 comprise A026147 and those of 1 comprise A181155. The procedure is then repeated starting with those two sequences, resulting in A189301.
MATHEMATICA
u[n_] := 2 n - 1; a[1] = 0; h = 400;
c = (u[#1] &) /@ Range[h]; (*A005408*)
d = (Complement[Range[Max[#1]], #1] &)[c]; (*A005843*)
Table[a[d[[n]]] = 1 - a[n], {n, 1, h - 1}]; (*Thue-Morse: A010060*)
Table[a[c[[n]]] = a[n], {n, 1, h}] (*A010060*)
c = Flatten[Position[%, 0]] (*A026147*)
d = Flatten[Position[%%, 1]] (*A181155*)
a[1] = 0; h = 200
Table[a[d[[n]]] = 1 - a[n], {n, 1, h - 1}]; (*A189301*)
Table[a[c[[n]]] = a[n], {n, 1, h}] (*A189301*)
c = Flatten[Position[%, 0]] (*A189302*)
d = Flatten[Position[%%, 1]] (*A189303*)
KEYWORD
nonn
AUTHOR
Clark Kimberling, Apr 19 2011
STATUS
approved