login
A189280
T(n,k) = number of n X k array permutations with each element not moved or moved diagonally or antidiagonally by one.
8
1, 1, 1, 1, 4, 1, 1, 9, 9, 1, 1, 25, 45, 25, 1, 1, 64, 225, 225, 64, 1, 1, 169, 1125, 2704, 1125, 169, 1, 1, 441, 5625, 29241, 29241, 5625, 441, 1, 1, 1156, 28125, 323761, 670480, 323761, 28125, 1156, 1, 1, 3025, 140625, 3553225, 15594601, 15594601, 3553225
OFFSET
1,5
COMMENTS
Table starts
.1....1.......1..........1.............1................1...................1
.1....4.......9.........25............64..............169.................441
.1....9......45........225..........1125.............5625...............28125
.1...25.....225.......2704.........29241...........323761.............3553225
.1...64....1125......29241........670480.........15594601...........361199937
.1..169....5625.....323761......15594601........787195249.........39085685401
.1..441...28125....3553225.....361199937......39085685401.......4145792570105
.1.1156..140625...39100009....8366395024....1949419118656.....441979857682489
.1.3025..703125..429981696..193788877917...97069135502689...47045498167288233
.1.7921.3515625.4729725529.4488512569321.4835817858602025.5009341586507664025
LINKS
EXAMPLE
Some solutions for 5X3
..0..5..4....0..5..2....0..5..2....0..3..2....0..1..4....0..1..2....0..5..4
..3..2..1....3..6..1....3..8..1....1..6..5....3..2..5....7..4..5....3..2..1
..6.11..8....4..9..8...10.11..4....4..9..8...10.11..8....6..3.10....6.11..8
..7.14.13....7.14.13....7..6.13....7.10.13....9..6..7...13..8.11....9.10..7
.12..9.10...12.11.10...12..9.14...12.11.14...12.13.14...12..9.14...12.13.14
CROSSREFS
Sequence in context: A146955 A155451 A220681 * A168621 A376721 A039756
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Apr 19 2011
STATUS
approved