OFFSET
0,1
COMMENTS
(Start) Let U be the unit-primitive matrix (see [Jeffery])
U=U_(11,3)=
(0 0 0 1 0)
(0 0 1 0 1)
(0 1 0 1 1)
(1 0 1 1 1)
(0 1 1 1 1).
Then a(n)=Trace(U^n). (End)
Evidently one of a class of accelerator sequences for Catalan's constant based on traces of successive powers of a unit-primitive matrix U_(N,r) (0<r<floor(N/2)) and for which the closed-form expression for a(n) is derived from the eigenvalues of U_(N,r).
LINKS
L. E. Jeffery, Unit-primitive matrices
Index entries for linear recurrences with constant coefficients, signature (2, 5, -2, -4, -1).
FORMULA
G.f.: (5-8*x-15*x^2+4*x^3+4*x^4)/(1-2*x-5*x^2+2*x^3+4*x^4+x^5).
a(n)=2*a(n-1)+5*a(n-2)-2*a(n-3)-4*a(n-4)-a(n-5), {a(m)}={5,2,14,32,114}, m=0..4.
a(n)=Sum_{k=1..5} ((x_k)^3-2*(x_k))^n; x_k=2*(-1)^(k-1)*cos(k*Pi/11).
MATHEMATICA
CoefficientList[Series[ (5-8x-15x^2+4x^3+4x^4)/ (1-2x-5x^2+2x^3+4x^4+x^5), {x, 0, 29}], x] (* Harvey P. Dale, Apr 19 2011 *)
LinearRecurrence[{2, 5, -2, -4, -1}, {5, 2, 14, 32, 114}, 30] (* T. D. Noe, Apr 19 2011 *)
PROG
(PARI) Vec((5-8*x-15*x^2+4*x^3+4*x^4)/(1-2*x-5*x^2+2*x^3+4*x^4+x^5)+O(x^99)) \\ Charles R Greathouse IV, Sep 25 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
L. Edson Jeffery, Apr 18 2011
STATUS
approved