login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A189087 E.g.f.: sinh(x)/(1-sinh(x)-sinh(x)^2). 1
1, 2, 13, 80, 721, 7232, 87613, 1193600, 18431041, 315130112, 5936395213, 121904337920, 2712867153361, 65005861947392, 1669061195146813, 45709411009495040, 1330071346341607681, 40979304201240707072, 1332713597815933766413, 45623097880495676456960 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Robert Israel, Table of n, a(n) for n = 1..413

FORMULA

a(n) = sum(k=1..n, sum(i=0..k, (-1)^i*(k-2*i)^n * binomial(k,i)) / (2^k) * A000045(k)).

a(n) ~ n! * sqrt(5-sqrt(5))/(5*sqrt(2))/(arcsinh(sqrt(5)/2-1/2))^(n+1). - Vaclav Kotesovec, Jun 27 2013

MAPLE

h:= sinh(x)/(1-sinh(x)-sinh(x)^2):

S:= series(h, x, 61):

seq(coeff(S, x, j)*j!, j=1..60); # Robert Israel, Jun 23 2017

MATHEMATICA

CoefficientList[Series[Sinh[x]/(1-Sinh[x]-Sinh[x]^2), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 27 2013 *)

PROG

(Maxima)

a(n):=sum(sum((-1)^i*(k-2*i)^n*binomial(k, i), i, 0, k)/(2^k)*fib(k), k, 1, n);

CROSSREFS

Cf. A000045.

Sequence in context: A000179 A335700 A246383 * A037739 A037634 A074581

Adjacent sequences: A189084 A189085 A189086 * A189088 A189089 A189090

KEYWORD

nonn

AUTHOR

Vladimir Kruchinin, Apr 20 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 19:04 EST 2022. Contains 358588 sequences. (Running on oeis4.)