This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A189021 Apostol's second order Möbius (or Moebius) function mu_2(n). 5
 1, 1, 1, -1, 1, 1, 1, 0, -1, 1, 1, -1, 1, 1, 1, 0, 1, -1, 1, -1, 1, 1, 1, 0, -1, 1, 0, -1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, -1, -1, 1, 1, 0, -1, -1, 1, -1, 1, 0, 1, 0, 1, 1, 1, -1, 1, 1, -1, 0, 1, 1, 1, -1, 1, 1, 1, 0, 1, 1, -1, -1, 1, 1, 1, 0, 0, 1, 1, -1, 1, 1, 1, 0, 1, -1, 1, -1, 1, 1, 1, 0, 1, -1, -1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1 COMMENTS The function mu_k(n) is defined to be 0 if a (k+1)st power of a prime divides n, otherwise it is (-1)^r where r is the number of distinct primes p that appear as p^k in the canonical factorization of n. Differs from the (non-multiplicative) A053864 at n= 12, 18, 20, 28, 44, 45, 50, 52, 60, ... R. J. Mathar, Dec 17 2012 LINKS Antti Karttunen, Table of n, a(n) for n = 1..10000 Tom Apostol, Introduction to analytic number theory, (1976) Springer, page 50 Tom Apostol, Mobius function of order k, Pac. J. Math. 32 (1) (1970) 21-27 Antal Bege, A generalization of Apostol's Mobius functions of order k, arXiv:0907.5293 [math.NT], 2009. R. J. Mathar, Survey of Dirichlet series of multiplicative arithmetic functions, arXiv:1106.4038 [math.NT], 2011-2012, Section 4.3. A. F. Möbius, Über eine besondere Art von Umkehrung der Reihen. Journal für die reine und angewandte Mathematik 9 (1832), 105-123. FORMULA mu_1(n) = mu(n) = A008683(n). mu_k(n) = sum_{d^k|n} mu_{k-1}(n/d^k)*mu_{k-1}(n/d), k>=2. Multiplicative with a(p)=1, a(p^2)=-1 and a(p^e)=0 if e>=3. Dirichlet g.f. product_{primes p} (1+p^(-s)-p^(-2s)). - R. J. Mathar, Oct 31 2011 Sum_{n <= x} a(n) = kx + O(sqrt(x) log x), where k = 0.4282495... = A065464. - Charles R Greathouse IV, Jan 24 2018 MAPLE A189021 := proc(n) local d, d1, d2; d1:=divisors(n); d2:=select(m->member(m^2, d1), d1); add(mobius(n/d^2)*mobius(n/d), d=d2) end; # Peter Luschny, Oct 30 2010 mu := proc(n, k) local d, a; if k = 1 then return numtheory[mobius](n) ; end if; a := 0 ; for d in numtheory[divisors](n) do if n mod (d^k) = 0 then a := a+procname(n/d^k, k-1)*procname(n/d, k-1) ; end if; end do: a ; end proc: A189021 := proc(n) mu(n, 2) ; end proc: MATHEMATICA a[1] = 1; a[n_] := Sum[ Boole[ Divisible[n, d^2]]*MoebiusMu[n/d^2]*MoebiusMu[n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jun 24 2013 *) PROG (PARI) a(n)=if(n<2, 1, sumdiv(n, d, if(n%d^2, 0, moebius(n/d^2)*moebius(n/d)))) \\ Benoit Cloitre, Oct 03 2010 (Scheme) (define (A189021 n) (cond ((= 1 n) n) (else (* (case (A067029 n) ((1) 1) ((2) -1) (else 0)) (A189021 (A028234 n)))))) ;; (after the given multiplicative formula) - Antti Karttunen, Jul 18 2017 (Python) from sympy import factorint from operator import mul def a(n): return 1 if n==1 else reduce(mul, [1 if e==1 else -1 if e==2 else 0 for p, e in factorint(n).items()]) print map(a, range(1, 201)) # Indranil Ghosh, Jul 19 2017 CROSSREFS Cf. A008683, A053864, A189022, A189023. Sequence in context: A115789 A212793 A053864 * A307420 A129667 A071374 Adjacent sequences:  A189018 A189019 A189020 * A189022 A189023 A189024 KEYWORD sign,mult,changed AUTHOR R. J. Mathar, Apr 15 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 22:02 EST 2019. Contains 330012 sequences. (Running on oeis4.)