This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A189008 Zero-one sequence based on cubes:  a(A000578(k))=a(k); a(A007412(k))=1-a(k); a(1)=0. 4
 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1 COMMENTS Let u=A000578 and v=A007412, so that u(n)=n^3 and v=complement(u) for n>=1.  Then a is a self-generating zero-one sequence with initial value a(1)=0 and a(u(k))=a(k); a(v(k))=1-a(k). LINKS MATHEMATICA u[n_] := n^3; a[1] = 0; h = 128; c = (u[#1] &) /@ Range[h]; (*A000578*) d = (Complement[Range[Max[#1]], #1] &)[c]; (*A007412*) Table[a[d[[n]]] = 1 - a[n], {n, 1, h - 1}]; Table[a[c[[n]]] = a[n], {n, 1, h}]   (*A189008*) Flatten[Position[%, 0]]  (*A189009*) Flatten[Position[%%, 1]] (*A189010*) CROSSREFS Cf. A188967, A189009, A189010. Sequence in context: A179081 A113217 A189219 * A276793 A285515 A190204 Adjacent sequences:  A189005 A189006 A189007 * A189009 A189010 A189011 KEYWORD nonn AUTHOR Clark Kimberling, Apr 15 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 17:46 EDT 2019. Contains 327273 sequences. (Running on oeis4.)