login
A188970
Zero-one sequence based on (4n-3): a(A016813(k))=a(k); a(A004772(k))=1-a(k); a(1)=0.
3
0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1
OFFSET
1
COMMENTS
Let u=A016813 and v=A004772, so that u(n)=4n-3 and v=complement(u) for n>=1. Then a is a self-generating zero-one sequence with initial value a(1)=0 and a(u(k))=a(k); a(v(k))=1-a(k).
MATHEMATICA
u[n_] := 4n - 3; (*A016813*)
a[1] = 0; h = 128;
c = (u[#1] &) /@ Range[h];
d = (Complement[Range[Max[#1]], #1] &)[c]; (*A004772*)
Table[a[d[[n]]] = 1 - a[n], {n, 1, h - 1}];
Table[a[c[[n]]] = a[n], {n, 1, h}] (*A188970*)
Flatten[Position[%, 0]] (*A188971*)
Flatten[Position[%%, 1]] (*A188972*)
CROSSREFS
Sequence in context: A316832 A086747 A188973 * A244992 A286685 A284878
KEYWORD
nonn
AUTHOR
Clark Kimberling, Apr 14 2011
STATUS
approved