This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A188919 Triangle read by rows: T(n,k) = number of permutations of length n with k inversions that avoid the "dashed pattern" 1-32. 4
 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 3, 3, 1, 1, 1, 2, 4, 7, 8, 9, 9, 6, 4, 1, 1, 1, 2, 4, 7, 13, 16, 22, 26, 29, 26, 23, 17, 10, 5, 1, 1, 1, 2, 4, 7, 13, 22, 31, 44, 60, 74, 89, 95, 98, 93, 82, 63, 47, 29, 15, 6, 1, 1, 1, 2, 4, 7, 13, 22, 38, 55, 83, 116, 160, 207, 259, 304, 347, 375, 386, 378, 348, 304, 249, 190, 131, 85, 46, 21, 7, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 COMMENTS Row n has length 1 + binomial(n,2) and sum A000110(n) (a Bell number). LINKS Alois P. Heinz, Rows n = 0..50, flattened A. M. Baxter, Algorithms for Permutation Statistics, Ph. D. Dissertation, Rutgers University, May 2011. Andrew Baxter, Additional terms, formatted as a table. Andrew M. Baxter and Lara K. Pudwell, Enumeration schemes for dashed patterns, arXiv preprint arXiv:1108.2642, 2011 Jean-Christophe Novelli, Jean-Yves Thibon, Frédéric Toumazet, Noncommutative Bell polynomials and the dual immaculate basis, arXiv:1705.08113 [math.CO], 2017. EXAMPLE Triangle begins: 1 1 1 1 1 1 2 1 1 1 2 4 3 3 1 1 1 2 4 7 8 9 9 6 4 1 ... MAPLE b:= proc(u, o) option remember; expand(`if`(u+o=0, 1,        add(b(u-j, o+j-1)*x^(o+j-1), j=1..u)+        add(`if`(u=0, b(u+j-1, o-j)*x^(o-j), 0), j=1..o)))     end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(0, n)): seq(T(n), n=0..10);  # Alois P. Heinz, Nov 14 2015 MATHEMATICA b[u_, o_] := b[u, o] = Expand[If[u+o == 0, 1, Sum[b[u-j, o+j-1]* x^(o+j-1), {j, 1, u}] + Sum[If[u == 0, b[u+j-1, o-j]*x^(o-j), 0], {j, 1, o}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}] ][b[0, n]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 01 2016, after Alois P. Heinz *) CROSSREFS The column limits are given by A188920. Cf. A000110, A161680. Sequence in context: A145515 A267383 A272896 * A026519 A025177 A026148 Adjacent sequences:  A188916 A188917 A188918 * A188920 A188921 A188922 KEYWORD nonn,tabf AUTHOR N. J. A. Sloane, Apr 13 2011 EXTENSIONS More terms from Andrew Baxter, May 17 2011. STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 19 13:02 EST 2019. Contains 320310 sequences. (Running on oeis4.)