login
A188902
Numerator of the base n logarithm of the product of the divisors of n.
1
1, 1, 3, 1, 2, 1, 2, 3, 2, 1, 3, 1, 2, 2, 5, 1, 3, 1, 3, 2, 2, 1, 4, 3, 2, 2, 3, 1, 4, 1, 3, 2, 2, 2, 9, 1, 2, 2, 4, 1, 4, 1, 3, 3, 2, 1, 5, 3, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 6, 1, 2, 3, 7, 2, 4, 1, 3, 2, 4, 1, 6, 1, 2, 3, 3, 2
OFFSET
2,3
COMMENTS
Obviously the product of divisors of n (see A007955) is a multiple of n. But often it is also a perfect power of n, a number of the form n^m with m an integer. But if n is a perfect square (A000290), then the logarithm is a rational number but not an integer.
a(1) is of course indeterminate since it can be any value desired, whether real, imaginary or complex.
The denominator is A010052(n) + 1.
LINKS
FORMULA
a(n) = numerator(A000005(n)/2).
a(n) = (A038548(n) + A056924(n)) / 2 for n > 1.
MATHEMATICA
Numerator[Table[FullSimplify[Log[n, Times@@Divisors[n]]], {n, 2, 75}]]
PROG
(PARI) A188902(n) = numerator(numdiv(n)/2); \\ Antti Karttunen, May 27 2017
(Python)
from sympy import divisor_count, Integer
def a(n): return (divisor_count(n) / 2).numerator()
print([a(n) for n in range(2, 51)]) # Indranil Ghosh, May 27 2017
CROSSREFS
KEYWORD
nonn,easy,frac
AUTHOR
Alonso del Arte, Apr 19 2011
STATUS
approved