The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A188899 Third row of array in A187617. 4
 1, 5, 36, 281, 2245, 18061, 145601, 1174500, 9475901, 76455961, 616891945, 4977472781, 40161441636, 324048393905, 2614631600701, 21096536145301, 170220478472105, 1373448758774436, 11081871650713781, 89415697915538545, 721463601671126161, 5821234309893001301, 46969478172465070500, 378980086070257592201, 3057856106268358639861 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..400 N. Allegra, Exact solution of the 2d dimer model: Corner free energy, correlation functions and combinatorics, arXiv:1410.4131 [cond-mat.stat-mech], 2014. See Table 1. Index entries for linear recurrences with constant coefficients, signature (11,-25,11,-1). FORMULA G.f.: (1-x)*(x^2-5*x+1)/(x^4-11*x^3+25*x^2-11*x+1). - Alois P. Heinz, Oct 28 2012 MAPLE ft:=(m, n)-> 2^(m*n/2)*mul( mul( (cos(Pi*i/(n+1))^2+cos(Pi*j/(m+1))^2), j=1..m/2), i=1..n/2); gt:=(m, n)->round(evalf(ft(m, n), 300)); tt:=[seq(gt(4, 2*n), n=0..10)]; # second Maple program: a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-1|11|-25|11>>^n.         <<1, 5, 36, 281>>)[1, 1]: seq(a(n), n=0..30);  # Alois P. Heinz, Oct 28 2012 MATHEMATICA LinearRecurrence[{11, -25, 11, -1}, {1, 5, 36, 281}, 25] (* Jean-François Alcover, Jun 17 2018 *) PROG (PARI) x='x+O('x^200); Vec((1-x)*(x^2-5*x+1)/(x^4-11*x^3+25*x^2-11*x+1)) \\ Altug Alkan, Mar 23 2016 CROSSREFS Bisection (odd part) of A005178. - Alois P. Heinz, Oct 28 2012 Sequence in context: A327091 A201351 A253470 * A052203 A332624 A027331 Adjacent sequences:  A188896 A188897 A188898 * A188900 A188901 A188902 KEYWORD nonn AUTHOR N. J. A. Sloane, Apr 13 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 25 04:27 EST 2021. Contains 340416 sequences. (Running on oeis4.)