login
A188889
Least number k > 0 that makes (k+1)^n (mod k^n) a positive even number.
1
3, 5, 3, 5, 7, 5, 9, 5, 7, 5, 3, 3, 3, 5, 5, 5, 3, 5, 3, 3, 5, 3, 3, 5, 3, 5, 7, 7, 3, 3, 5, 5, 3, 3, 3, 5, 5, 7, 7, 5, 9, 7, 3, 3, 3, 15, 7, 3, 3, 3, 3, 5, 3, 7, 3, 5, 5, 7, 3, 3, 5, 3, 5, 3, 3, 3, 5, 5, 5, 5, 5, 5, 7, 5, 5, 3, 5, 3, 3, 3, 5, 3, 13, 3, 3, 3, 3, 13, 3, 3, 5, 5, 3, 7, 3, 5, 5, 5
OFFSET
3,1
COMMENTS
The value of (k+1)^n (mod k^n) is in A188699.
MATHEMATICA
Table[k = 1; While[r = Mod[(k + 1)^n, k^n]; r == 0 || OddQ[r], k++]; k, {n, 3, 100}]
CROSSREFS
Sequence in context: A249384 A228446 A364564 * A219604 A296489 A253398
KEYWORD
nonn
AUTHOR
T. D. Noe, Apr 12 2011
STATUS
approved