login
A188831
Primes of the form k^2 - prime(k).
5
23, 71, 107, 263, 487, 677, 787, 1427, 1583, 2081, 3319, 5393, 8713, 10247, 11071, 12377, 18257, 20477, 24659, 26573, 29243, 29927, 33487, 34949, 37223, 37991, 41981, 51449, 60917, 64937, 66977, 71167, 83357, 85667, 99013, 100271, 109313, 110629, 118757
OFFSET
1,1
COMMENTS
Or, primes in A073497. Corresponding values of k in A064712.
This is to A073497 and A064712 as A184935 is to A004232 and A064711.
The two primes prime(k) and k^2-prime(k) are a Goldbach partition of k^2. - T. D. Noe, Apr 14 2011
FORMULA
a(n) = A073497(A064712(n)).
EXAMPLE
23 is here because 6^2 - prime(6) = 36 - 13 = 23.
MATHEMATICA
Select[Table[k^2 - Prime[k], {k, 1000}], PrimeQ] (* T. D. Noe, Apr 14 2011 *)
PROG
(Magma) [ a: k in [0..10000] | IsPrime(a) where a is k^2-NthPrime(k) ]; // Vincenzo Librandi, Apr 14 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Apr 11 2011
STATUS
approved