login
A188824
T(n,k) = number of n X k binary arrays without the pattern 0 1 diagonally or antidiagonally.
13
2, 4, 4, 8, 9, 8, 16, 25, 16, 16, 32, 64, 48, 25, 32, 64, 169, 144, 81, 36, 64, 128, 441, 432, 256, 120, 49, 128, 256, 1156, 1296, 841, 400, 169, 64, 256, 512, 3025, 3888, 2704, 1360, 576, 224, 81, 512, 1024, 7921, 11664, 8836, 4624, 2025, 784, 289, 100, 1024, 2048
OFFSET
1,1
COMMENTS
Table starts
....2...4...8...16...32....64...128....256.....512....1024.....2048.....4096
....4...9..25...64..169...441..1156...3025....7921...20736....54289...142129
....8..16..48..144..432..1296..3888..11664...34992..104976...314928...944784
...16..25..81..256..841..2704..8836..28561...93025..301401...980100..3179089
...32..36.120..400.1360..4624.15776..53824..183744..627264..2141568..7311616
...64..49.169..576.2025..7056.24964..87616..310249.1092025..3865156.13623481
..128..64.224..784.2800.10000.36000.129600..468000.1690000..6110000.22090000
..256..81.289.1024.3721.13456.49284.179776..660969.2421136..8916196.32729841
..512.100.360.1296.4752.17424.64416.238144..884256.3283344.12220128.45481536
.1024.121.441.1600.5929.21904.81796.304704.1142761.4276624.16080100.60341824
LINKS
FORMULA
Empirical: a(n,1) = 2^n
Empirical: a(n,2) = n^2 + 2*n + 1
Empirical: a(n,3) = 2*a(n-1,3) - 2*a(n-3,3) + a(n-4,3)
Empirical: a(n,4) = 16*n^2
Empirical: a(n,5) = 2*a(n-1,5) - 2*a(n-3,5) + a(n-4,5) for n>5
Empirical: a(n,6) = 256*n^2 - 384*n + 144 for n>2
Empirical: a(n,7) = 2*a(n-1,7) - 2*a(n-3,7) + a(n-4,7) for n>7
Empirical: a(n,8) = 4096*n^2 - 11264*n + 7744 for n>4
EXAMPLE
Some solutions for 5X3
..1..1..1....1..1..1....1..1..1....1..1..1....1..1..1....0..1..0....1..1..1
..1..1..1....0..1..1....1..0..1....1..1..1....1..1..1....1..0..1....1..1..1
..1..1..1....0..0..1....0..1..0....1..1..1....0..1..0....0..1..0....0..1..1
..1..1..1....0..0..0....0..0..0....0..0..0....0..0..0....1..0..1....1..0..1
..1..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..1..0
CROSSREFS
Column 2 is A000290(n+1).
Column 4 is A016802.
Row 2 is A007598(n+2).
Sequence in context: A107848 A285273 A353946 * A181212 A233394 A029599
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Apr 11 2011
STATUS
approved