login
A188804
Continued fraction for (Pi - sqrt(-4 + Pi^2))/2.
2
0, 2, 1, 3, 1, 1, 2, 3, 1, 4, 1, 1, 34, 4, 1, 3, 2, 1, 2, 2, 14, 1, 9, 5, 1, 1, 1, 1, 1, 9, 2, 1, 3, 2, 2, 2, 3, 26, 1, 8, 10, 2, 1, 23, 1, 67, 1, 2, 5, 1, 2, 3, 1, 1, 2, 1, 1, 17, 1, 2, 1, 9, 3, 8, 3, 3, 1, 2, 1, 21, 4, 1, 3, 1, 74, 1, 3, 1, 26, 1, 19, 1, 1, 2, 3, 1, 5, 1, 4, 2, 1, 2, 1, 2, 1, 1, 1, 1, 3, 4, 1, 1, 2, 1, 1, 1, 7, 1, 2, 38, 1, 9, 5, 6, 1, 1, 2, 1, 1, 4
OFFSET
0,2
LINKS
EXAMPLE
(Pi - sqrt(-4 + Pi^2))/2 = [0,2,1,3,1,1,2,3,1,5,1,1,34,...].
MAPLE
numtheory:-cfrac((Pi-sqrt(Pi^2-4))/2, 40, 'quotients'); # Robert Israel, Jun 15 2015
MATHEMATICA
r = Pi; t = (r - (-4 + r^2)^(1/2))/2; FullSimplify[t]
N[t, 130]
RealDigits[N[t, 130]][[1]]
ContinuedFraction[t, 120]
PROG
(PARI) contfrac((Pi-sqrt(-4+Pi^2))/2) \\ Michel Marcus, Jun 14 2015
CROSSREFS
Cf. A189044 (decimal expansion).
Sequence in context: A140583 A237266 A123507 * A122580 A265332 A107041
KEYWORD
nonn,cofr
AUTHOR
Clark Kimberling, Apr 15 2011
EXTENSIONS
Definition corrected by Robert Israel, Jun 15 2015
Offset changed by Andrew Howroyd, Aug 08 2024
STATUS
approved