%I #5 Mar 31 2012 12:36:13
%S 12,144,1103,7868,60215,471349,3658041,28240356,218167554,1687182731,
%T 13048449716,100897161709,780153946407,6032429478257,46645504480302,
%U 360683651186398,2788957182000107,21565381169985048,166752620658425497
%N Number of nX4 binary arrays without the pattern 0 1 0 vertically or horizontally
%C Column 4 of A188774
%H R. H. Hardin, <a href="/A188769/b188769.txt">Table of n, a(n) for n = 1..200</a>
%F Empirical: a(n) = 9*a(n-1) -26*a(n-2) +120*a(n-3) +55*a(n-4) -207*a(n-5) +1143*a(n-6) -2223*a(n-7) -7821*a(n-8) +5631*a(n-9) +15011*a(n-10) +4093*a(n-11) -1011*a(n-12) -14644*a(n-13) -19696*a(n-14) -2087*a(n-15) +2890*a(n-16) +11655*a(n-17) +9364*a(n-18) +4150*a(n-19) +1661*a(n-20) -896*a(n-21) -501*a(n-22) -175*a(n-23) -82*a(n-24) +24*a(n-25) +12*a(n-26)
%e Some solutions for 3X4
%e ..1..0..0..0....0..0..1..1....0..1..1..1....0..1..1..1....1..1..0..0
%e ..1..0..0..0....0..0..0..0....0..0..1..1....1..0..0..0....1..0..0..0
%e ..0..0..0..0....0..0..0..1....0..1..1..1....1..0..1..1....1..1..1..0
%K nonn
%O 1,1
%A _R. H. Hardin_ Apr 09 2011