OFFSET
1,1
COMMENTS
For squares, it is a simple matter to find squares that are the product of squares greater than 1. Is there a simple procedure for triangular numbers? That is, given n, is it easy to determine whether T(n) is the product of T(i) * T(j) for some i,j > 1?
Breiteig mentions this problem, but does not solve it. The problem can be extended to any polygonal number; for example, when is a pentagonal number the product of two pentagonal numbers? See A188660 and A188663 for the oblong and pentagonal cases.
Sequence A001571 gives the indices of triangular numbers that are 3 times another triangular number. For example, A001571(4) is 132; T(132) is 8778, which equals 3*T(76). Note that A061278 is the companion sequence, whose 4th term is 76. As with the oblong numbers covered by Breiteig, the triangular numbers in this sequence appear to satisfy linear recursions.
LINKS
Donovan Johnson, Table of n, a(n) for n = 1..4082
Trygve Breiteig, When is the product of two oblong numbers another oblong?, Math. Mag. 73 (2000), 120-129.
EXAMPLE
210 = T(20) = 10 * 21 = T(4) * T(6).
MAPLE
A188630 := proc(limit) local t, E, n, k, c, b, ist; E:=NULL;
t := proc(n) option remember; iquo(n*(n+1), 2) end;
ist := proc(n) option remember; n = t(floor(sqrt(2*n))) end;
for n from 2 do
c := t(n); if c > limit then break fi;
for k from 2 do
b := c*t(k); if b > limit then break fi;
if ist(b) then E := E, b fi;
od od; sort({E}) end:
A188630(200000); # Peter Luschny, Dec 21 2017
MATHEMATICA
TriangularQ[n_] := IntegerQ[Sqrt[1 + 8 n]]; TriIndex[n_] := Floor[(-1 + Sqrt[1 + 8*n])/2]; lim = 10^6; nMax = TriIndex[lim/3]; tri = Table[n (n + 1)/2, {n, 2, nMax}]; Union[Reap[Do[num = tri[[i]]*tri[[j]]; If[TriangularQ[num], Sow[num]], {i, TriIndex[Sqrt[lim]]}, {j, i, TriIndex[lim/tri[[i]]] - 1}]][[2, 1]]]
Module[{upto=530000, maxr}, maxr=Ceiling[(Sqrt[1+8*Ceiling[upto/3]]-1)/2]; Union[Select[Times@@@Tuples[Rest[Accumulate[Range[maxr]]], 2], IntegerQ[ Sqrt[1+8#]]&&#<=upto&]]] (* Harvey P. Dale, Jun 12 2012 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
T. D. Noe, Apr 06 2011
STATUS
approved