login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of reachable configurations in a chip-firing game on a triangle starting with n chips on one vertex.
1

%I #25 Jun 16 2016 23:27:44

%S 1,2,2,5,7,8,12,15,17,22,26,29,35,40,44,51,57,62,70,77,83,92,100,107,

%T 117,126,134,145,155,164,176,187,197,210,222,233,247,260,272,287,301,

%U 314,330,345,359,376,392,407,425,442,458,477,495,512,532,551,569,590,610,629,651,672,692,715,737,758,782,805,827,852,876,899,925,950,974,1001

%N Number of reachable configurations in a chip-firing game on a triangle starting with n chips on one vertex.

%C Quasipolynomial with period 3 (see formulas below).

%H J. Schneider, <a href="http://arxiv.org/abs/1104.0279v1">Enumeration and Quasipolynomiality of Chip-Firing Configurations</a>, arXiv:1104.0279 [math.CO], 2011.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,1,-2,1).

%F a(3*k) = (3*k^2 + 3*k - 2)/2,

%F a(3*k+1) = (3*k^2 + 5*k + 2)/2,

%F a(3*k+2) = (3*k^2 + 7*k + 4)/2.

%F G.f.: x*(1 - x^2 + 2*x^3 - x^4)/((1 + x + x^2)*(1 - x)^3). [_Bruno Berselli_, Feb 03 2016]

%F a(n) = (n*(n + 3) - 4*(-1)^floor(2*n/3 + 1/3) - 2)/6. [_Bruno Berselli_, Feb 03 2016]

%e For n=4, a(4)=5 because the reachable configurations are: (4, 0, 0), (2, 1, 1), (0, 2, 2), (1, 0, 3), (3, 0, 1).

%t Table[(n (n + 3) - 4 (-1)^Floor[2 n/3 + 1/3] - 2)/6, {n, 1, 80}]

%t (* _Bruno Berselli_, Feb 03 2016 *)

%o (Sage) [(n*(n+3)-4*(-1)^floor(2*n/3+1/3)-2)/6 for n in (1..80)] # _Bruno Berselli_, Feb 03 2016

%K nonn,easy

%O 1,2

%A _Jon Schneider_, Apr 05 2011