login
A188558
Number of 7 X n binary arrays without the pattern 0 1 diagonally, vertically, antidiagonally or horizontally.
2
8, 15, 28, 52, 96, 176, 320, 576, 1024, 1793, 3084, 5200, 8584, 13866, 21920, 33932, 51480, 76627, 112028, 161052, 227920, 317860, 437280, 593960, 797264, 1058373, 1390540, 1809368, 2333112, 2983006, 3783616, 4763220, 5954216, 7393559, 9123228
OFFSET
1,1
COMMENTS
Row 7 of A188553.
LINKS
FORMULA
Empirical: a(n) = (1/5040)*n^7 - (1/360)*n^6 + (11/360)*n^5 - (1/9)*n^4 + (427/720)*n^3 + (41/360)*n^2 + (709/210)*n + 4.
Conjectures from Colin Barker, Apr 28 2018: (Start)
G.f.: x*(8 - 49*x + 132*x^2 - 200*x^3 + 184*x^4 - 102*x^5 + 32*x^6 - 4*x^7) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)
EXAMPLE
Some solutions for 7 X 3:
..1..1..1....1..1..1....1..1..1....1..1..1....1..1..1....1..1..1....1..1..1
..1..1..1....1..1..1....1..1..1....1..1..1....1..1..1....1..1..1....1..1..1
..1..1..1....1..1..0....1..1..1....1..1..1....1..1..1....1..1..1....1..1..1
..1..1..1....1..0..0....1..1..1....1..1..1....1..1..0....1..1..1....1..1..1
..1..1..1....0..0..0....1..1..0....1..1..1....0..0..0....1..1..1....1..1..1
..1..1..1....0..0..0....1..0..0....1..0..0....0..0..0....1..1..1....1..1..0
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....1..0..0....1..0..0
CROSSREFS
Cf. A188553.
Sequence in context: A318111 A240522 A132298 * A123526 A083686 A293360
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 04 2011
STATUS
approved