login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A188513 Riordan matrix (1/(x+sqrt(1-4x)),(1-sqrt(1-4x))/(2(x+sqrt(1-4x))). 1

%I

%S 1,1,1,3,3,1,9,11,5,1,29,40,23,7,1,97,147,99,39,9,1,333,544,413,194,

%T 59,11,1,1165,2025,1691,907,333,83,13,1,4135,7575,6842,4078,1725,524,

%U 111,15,1,14845,28455,27464,17856,8453,2979,775,143,17,1,53791,107277,109631,76718,39851,15804,4797,1094,179,19,1

%N Riordan matrix (1/(x+sqrt(1-4x)),(1-sqrt(1-4x))/(2(x+sqrt(1-4x))).

%C Triangle begins:

%C 1

%C 1, 1

%C 3, 3, 1

%C 9, 11, 5, 1

%C 29, 40, 23, 7, 1

%C 97, 147, 99, 39, 9, 1

%C 333, 544, 413, 194, 59, 11, 1

%C 1165, 2025, 1691, 907, 333, 83, 13, 1

%C 4135, 7575, 6842, 4078, 1725, 524, 111, 15, 1

%C First column = sequence A081696

%C Row sums = sequence A101850

%F T(n,k) = [x^n] ((1-sqrt(1-4*x))/(2*(x+sqrt(1-4*x)))^k/(x+sqrt(1-4*x)).

%F T(n,k) = [x^(n-k)] (1-2*x)/((1-x)^(n+1)*(1-x-x^2)^(k+1)).

%F T(n,k) = sum(binomial(i+k,k)*binomial(2*n-i,n+k+i)*(2*k+3*i+1)/(n+k+i+1), i=0..floor((n-k)/2)).

%t Flatten[Table[Sum[Binomial[i+k,k]Binomial[2n-i,n+k+i](2k+3i+1)/(n+k+i+1),{i,0,Floor[(n-k)/2]}],{n,0,10},{k,0,n}]]

%o (Maxima) create_list(sum(binomial(i+k,k)*binomial(2*n-i,n+k+i)*(2*k+3*i+1)/(n+k+i+1),i,0,floor((n-k)/2)),n,0,10,k,0,n);

%Y Cf. A081696, A101850.

%K nonn,easy,tabl

%O 0,4

%A _Emanuele Munarini_, Apr 02 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 11:31 EST 2016. Contains 279001 sequences.