login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A188513 Riordan matrix (1/(x+sqrt(1-4x)),(1-sqrt(1-4x))/(2(x+sqrt(1-4x))). 1
1, 1, 1, 3, 3, 1, 9, 11, 5, 1, 29, 40, 23, 7, 1, 97, 147, 99, 39, 9, 1, 333, 544, 413, 194, 59, 11, 1, 1165, 2025, 1691, 907, 333, 83, 13, 1, 4135, 7575, 6842, 4078, 1725, 524, 111, 15, 1, 14845, 28455, 27464, 17856, 8453, 2979, 775, 143, 17, 1, 53791, 107277, 109631, 76718, 39851, 15804, 4797, 1094, 179, 19, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Triangle begins:

1

1, 1

3, 3, 1

9, 11, 5, 1

29, 40, 23, 7, 1

97, 147, 99, 39, 9, 1

333, 544, 413, 194, 59, 11, 1

1165, 2025, 1691, 907, 333, 83, 13, 1

4135, 7575, 6842, 4078, 1725, 524, 111, 15, 1

First column = sequence A081696

Row sums = sequence A101850

LINKS

Table of n, a(n) for n=0..65.

FORMULA

T(n,k) = [x^n] ((1-sqrt(1-4*x))/(2*(x+sqrt(1-4*x)))^k/(x+sqrt(1-4*x)).

T(n,k) = [x^(n-k)] (1-2*x)/((1-x)^(n+1)*(1-x-x^2)^(k+1)).

T(n,k) = sum(binomial(i+k,k)*binomial(2*n-i,n+k+i)*(2*k+3*i+1)/(n+k+i+1), i=0..floor((n-k)/2)).

MATHEMATICA

Flatten[Table[Sum[Binomial[i+k, k]Binomial[2n-i, n+k+i](2k+3i+1)/(n+k+i+1), {i, 0, Floor[(n-k)/2]}], {n, 0, 10}, {k, 0, n}]]

PROG

(Maxima) create_list(sum(binomial(i+k, k)*binomial(2*n-i, n+k+i)*(2*k+3*i+1)/(n+k+i+1), i, 0, floor((n-k)/2)), n, 0, 10, k, 0, n);

CROSSREFS

Cf. A081696, A101850.

Sequence in context: A215120 A084145 A122919 * A260301 A216916 A157401

Adjacent sequences:  A188510 A188511 A188512 * A188514 A188515 A188516

KEYWORD

nonn,easy,tabl

AUTHOR

Emanuele Munarini, Apr 02 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 03:54 EST 2016. Contains 278698 sequences.