The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A188510 Expansion of x*(1 + x^2)/(1 + x^4) in powers of x. 17
 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS G. C. Greubel, Table of n, a(n) for n = 0..2500 Michael Somos, Rational Function Multiplicative Coefficients Eric Weisstein's World of Mathematics, Kronecker Symbol. Wikipedia, Kronecker Symbol. Index entries for linear recurrences with constant coefficients, signature (0,0,0,-1). FORMULA Euler transform of length 8 sequence [0, 1, 0, -2, 0, 0, 0, 1]. a(n) is multiplicative with a(2^e) = 0^e, a(p^e) = 1 if p == 1 or 3 (mod 8), a(p^e) = (-1)^e if p == 5 or 7 (mod 8). G.f.: x * (1 - x^4)^2/((1 - x^2)*(1 - x^8)) = (x + x^3)/(1 + x^4). a(-n) = -a(n) = a(n+4). a(n+2) = A091337(n). a(2*n) = 0, a(2*n+1) = A057077(n). G.f.: x/(1 - x^2/(1 + 2*x^2/(1 - x^2))). - Michael Somos, Jan 03 2013 a(n) = ((-2)/n), where (k/n) is the Kronecker symbol. Period 8. See the Eric Weisstein link. - Wolfdieter Lang, May 29 2013 a(n) = A257170(n) unless n = 0. From Jianing Song, Nov 14 2018: (Start) a(n) = sqrt(2)*sin(Pi*n/2)*cos(Pi*n/4). E.g.f.: sqrt(2)*sin(x/sqrt(2))*cosh(x/sqrt(2)). Moebius transform of A002325. a(n) = A091337(n)*A101455(n). a(n) = ((-2)^(2*i+1)/n) for all integers i >= 0, where (k/n) is the Kronecker symbol. (End) EXAMPLE G.f. = x + x^3 - x^5 - x^7 + x^9 + x^11 - x^13 - x^15 + x^17 + x^19 - x^21 + ... MATHEMATICA Table[KroneckerSymbol[-2, n], {n, 0, 104}] (* Wolfdieter Lang, May 30 2013 *) a[ n_] := Mod[n, 2] (-1)^Quotient[ n, 4]; (* Michael Somos, Apr 17 2015 *) CoefficientList[Series[x*(1+x^2)/(1+x^4), {x, 0, 60}], x] (* G. C. Greubel, Aug 02 2018 *) PROG (PARI) {a(n) = (n%2) * (-1)^(n\4)}; (PARI) x='x+O('x^60); concat([0], Vec(x*(1+x^2)/(1+x^4))) \\ G. C. Greubel, Aug 02 2018 (Magma) m:=60; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(1+x^2)/(1+x^4))); // G. C. Greubel, Aug 02 2018 CROSSREFS Cf. A002325, A057077, A091337, A101455, A257170. Sequence in context: A260393 A125122 A000035 * A131734 A134452 A327515 Adjacent sequences: A188507 A188508 A188509 * A188511 A188512 A188513 KEYWORD sign,easy,mult AUTHOR Michael Somos, Apr 10 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 04:50 EST 2022. Contains 358578 sequences. (Running on oeis4.)