login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A188510 Expansion of x*(1 + x^2)/(1 + x^4) in powers of x. 17
0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..2500

Michael Somos, Rational Function Multiplicative Coefficients

Eric Weisstein's World of Mathematics, Kronecker Symbol.

Wikipedia, Kronecker Symbol.

Index entries for linear recurrences with constant coefficients, signature (0,0,0,-1).

FORMULA

Euler transform of length 8 sequence [0, 1, 0, -2, 0, 0, 0, 1].

a(n) is multiplicative with a(2^e) = 0^e, a(p^e) = 1 if p == 1 or 3 (mod 8), a(p^e) = (-1)^e if p == 5 or 7 (mod 8).

G.f.: x * (1 - x^4)^2/((1 - x^2)*(1 - x^8)) = (x + x^3)/(1 + x^4).

a(-n) = -a(n) = a(n+4).

a(n+2) = A091337(n).

a(2*n) = 0, a(2*n+1) = A057077(n).

G.f.: x/(1 - x^2/(1 + 2*x^2/(1 - x^2))). - Michael Somos, Jan 03 2013

a(n) = ((-2)/n), where (k/n) is the Kronecker symbol. Period 8. See the Eric Weisstein link. - Wolfdieter Lang, May 29 2013

a(n) = A257170(n) unless n = 0.

From Jianing Song, Nov 14 2018: (Start)

a(n) = sqrt(2)*sin(Pi*n/2)*cos(Pi*n/4).

E.g.f.: sqrt(2)*sin(x/sqrt(2))*cosh(x/sqrt(2)).

Moebius transform of A002325.

a(n) = A091337(n)*A101455(n).

a(n) = ((-2)^(2*i+1)/n) for all integers i >= 0, where (k/n) is the Kronecker symbol. (End)

EXAMPLE

G.f. = x + x^3 - x^5 - x^7 + x^9 + x^11 - x^13 - x^15 + x^17 + x^19 - x^21 + ...

MATHEMATICA

Table[KroneckerSymbol[-2, n], {n, 0, 104}] (* Wolfdieter Lang, May 30 2013 *)

a[ n_] := Mod[n, 2] (-1)^Quotient[ n, 4]; (* Michael Somos, Apr 17 2015 *)

CoefficientList[Series[x*(1+x^2)/(1+x^4), {x, 0, 60}], x] (* G. C. Greubel, Aug 02 2018 *)

PROG

(PARI) {a(n) = (n%2) * (-1)^(n\4)};

(PARI) x='x+O('x^60); concat([0], Vec(x*(1+x^2)/(1+x^4))) \\ G. C. Greubel, Aug 02 2018

(Magma) m:=60; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(1+x^2)/(1+x^4))); // G. C. Greubel, Aug 02 2018

CROSSREFS

Cf. A002325, A057077, A091337, A101455, A257170.

Sequence in context: A260393 A125122 A000035 * A131734 A134452 A327515

Adjacent sequences: A188507 A188508 A188509 * A188511 A188512 A188513

KEYWORD

sign,easy,mult

AUTHOR

Michael Somos, Apr 10 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 04:50 EST 2022. Contains 358578 sequences. (Running on oeis4.)