%I #22 May 18 2019 20:38:21
%S 0,1,2,3,8,30,102,308,905,2744,8473,26112,79924,244204,747160,2288521,
%T 7009458,21461803,65704200,201162258,615922714,1885853660,5774072225,
%U 17678809840,54128358209,165728860112,507424764216,1553620027784,4756831354752
%N Number of permutations p on the set [n] with the properties that abs(p(i)-i) <= 3 for all i, p(1) <= 2, and p(j) >= 2 for j=3,4.
%C a(n) is also the permanent of the n X n matrix that has ones on its diagonal, ones on its three superdiagonals (with the exception of zeros in the (1,3) and (1,4)-entries), ones on its three subdiagonals (with the exception of zeros in the (3,1) and (4,1)-entries), and is zero elsewhere.
%C This is row 13 of Kløve's Table 3.
%H Torleiv Kløve, <a href="http://www.ii.uib.no/publikasjoner/texrap/pdf/2008-376.pdf"> Spheres of Permutations under the Infinity Norm - Permutations with limited displacement. </a> Reports in Informatics, Department of Informatics, University of Bergen, Norway, no. 376, November 2008.
%F From _Nathaniel Johnston_, Apr 11 2011: (Start)
%F a(n) = A188497(n+1) - A188494(n).
%F a(n) = A002526(n-1) + A002526(n-2).
%F (End)
%F G.f.: -(x^10 + 2*x^9 + x^8 - 2*x^6 - 2*x^5 - 2*x^4 - 3*x^3 + x) / (x^14 + 2*x^13 + 2*x^11 + 4*x^10 - 2*x^9 - 10*x^8 - 16*x^7 - 2*x^6 + 8*x^5 + 10*x^4 + 2*x^2 + 2*x - 1).
%p with(LinearAlgebra):
%p A188498:= n-> `if` (n=0, 0, Permanent (Matrix (n, (i, j)->
%p `if` (abs(j-i)<4 and [i, j]<>[1, 3] and [i, j]<>[1, 4] and [i, j]<>[3, 1] and [i, j]<>[4, 1], 1, 0)))):
%p seq (A188498(n), n=0..20);
%t a[n_] := Permanent[Table[If[Abs[j - i] < 4 && {i, j} != {1, 3} && {i, j} != {1, 4} && {i, j} != {3, 1} && {i, j} != {4, 1}, 1, 0], {i, 1, n}, {j, 1, n}]]; a[1] = 1; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 20}] (* _Jean-François Alcover_, Jan 07 2016, adapted from Maple *)
%t CoefficientList[Series[-(x^10 + 2 x^9 + x^8 - 2 x^6 - 2 x^5 - 2 x^4 - 3 x^3 + x) / (x^14 + 2 x^13 + 2 x^11 + 4 x^10 - 2 x^9 - 10 x^8 - 16 x^7 - 2 x^6 + 8 x^5 + 10 x^4 + 2 x^2 + 2 x - 1), {x, 0, 33}], x] (* _Vincenzo Librandi_, Jan 07 2016 *)
%o (PARI) concat(0, Vec(-(x^10+2*x^9+x^8 -2*x^6-2*x^5-2*x^4 -3*x^3+x) / (x^14+2*x^13+2*x^11 +4*x^10-2*x^9-10*x^8 -16*x^7-2*x^6+8*x^5 +10*x^4+2*x^2+2*x-1) + O(x^40))) \\ _Michel Marcus_, Dec 12 2014
%K nonn
%O 0,3
%A _N. J. A. Sloane_, Apr 01 2011
%E Name and comments edited, and a(12)-a(28) from _Nathaniel Johnston_, Apr 11 2011