login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A188481 Riordan matrix (1/(1-4x),(1-sqrt(1-4x))/(2sqrt(1-4x)). 2
1, 4, 1, 16, 7, 1, 64, 38, 10, 1, 256, 187, 69, 13, 1, 1024, 874, 406, 109, 16, 1, 4096, 3958, 2186, 748, 158, 19, 1, 16384, 17548, 11124, 4570, 1240, 216, 22, 1, 65536, 76627, 54445, 25879, 8485, 1909, 283, 25, 1, 262144, 330818, 259006, 138917, 52984, 14471, 2782, 359, 28, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Row sums = A141223;

Diagonal sums = A188482;

Inverse matrix: (1/(1+2x)^2,x(1+x)/(1+2x)^2).

Triangle begins:

1

4, 1

16, 7, 1

64, 38, 10, 1

256, 187, 69, 13, 1

1024, 874, 406, 109, 16, 1

4096, 3958, 2186, 748, 158, 19, 1

16384, 17548, 11124, 4570, 1240, 216, 22, 1

65536, 76627, 54445, 25879, 8485, 1909, 283, 25, 1

LINKS

Table of n, a(n) for n=0..54.

FORMULA

T(n,k) = [x^n] ((1-sqrt(1-4*x))/(2*sqrt(1-4*x))^k/(1-4*x).

Recurrence: T(n+1,k+1) = T(n,k) + 3*T(n,k-1) + T(n,k-2) - T(n,k-3) + T(n,k-4) - T(n,k-5) + ...

MATHEMATICA

Flatten[Table[Sum[Binomial[n+i, n]Binomial[n-i, k]2^(n-k-i), {i, 0, n-k}], {n, 0, 8}, {k, 0, 8}]]

PROG

(Maxima) create_list(sum(binomial(n+i, n)*binomial(n-i, k)*2^(n-k-i), i, 0, n-k), n, 0, 8, k, 0, n);

CROSSREFS

Cf. A141223, A188482

Sequence in context: A285281 A285267 A067425 * A138681 A038231 A104855

Adjacent sequences:  A188478 A188479 A188480 * A188482 A188483 A188484

KEYWORD

nonn,easy,tabl

AUTHOR

Emanuele Munarini, Apr 01 2011

EXTENSIONS

Comment corrected by Philippe Deléham, Jan 22 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 28 13:24 EDT 2020. Contains 337393 sequences. (Running on oeis4.)