login
A188475
a(n) = (2*n^3 + 3*n^2 + n + 3)/3.
4
1, 3, 11, 29, 61, 111, 183, 281, 409, 571, 771, 1013, 1301, 1639, 2031, 2481, 2993, 3571, 4219, 4941, 5741, 6623, 7591, 8649, 9801, 11051, 12403, 13861, 15429, 17111, 18911, 20833, 22881, 25059, 27371, 29821, 32413, 35151, 38039, 41081, 44281, 47643
OFFSET
0,2
COMMENTS
Hankel transform of A137398(n+1) (conjecture).
FORMULA
G.f.: (1 - x + 5*x^2 - x^3)/(1-x)^4.
a(n) = A006331(n) + 1. - Bruno Berselli, Nov 14 2011
MAPLE
A188475:=n->(2*n^3+3*n^2+n+3)/3; seq(A188475(n), n=0..100); # Wesley Ivan Hurt, Nov 11 2013
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {1, 3, 11, 29}, 100] (* Vincenzo Librandi, Nov 25 2011 *)
PROG
(Magma) [(2*n^3+3*n^2+n+3)/3: n in [0..50]]; // Vincenzo Librandi, Nov 25 2011
CROSSREFS
Sequence in context: A053845 A172102 A242807 * A072610 A110954 A000251
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Apr 01 2011
STATUS
approved