login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A188467 [4r]-[nr]-[4r-nr], where r=(1+sqrt(5))/2 and [.]=floor. 4
1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1

COMMENTS

See A188294.  First differs from A078588 at the 38th term.

(a(n)) is essentially the same as A188014 and also as A187950. The second sequence is a shift of (a(n)), and the first sequence is obtained by applying [-x]=[x]-1 for all non-integer x. This gives a(n) = 1-A188014(n) for all n not equal to 4. - Michel Dekking, Oct 04 2016

LINKS

Table of n, a(n) for n=1..179.

FORMULA

a(n)=[4r]-[nr]-[4r-nr], where r=(1+sqrt(5))/2.

MATHEMATICA

r = (1 + 5^(1/2))/2 + .0000000000001;

f[n_] := Floor[4r] - Floor[n*r] - Floor[4r - n*r]

t = Flatten[Table[f[n], {n, 1, 200}]] (* A188467 *)

Flatten[Position[t, 0] ]  (* A188468 *)

Flatten[Position[t, 1] ]  (* A188469 *)

CROSSREFS

Cf. A188294, A188468, A188469.

Sequence in context: A187950 A112539 A104104 * A039983 A152490 A145273

Adjacent sequences:  A188464 A188465 A188466 * A188468 A188469 A188470

KEYWORD

nonn

AUTHOR

Clark Kimberling, Apr 01 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 27 01:45 EST 2021. Contains 340443 sequences. (Running on oeis4.)