login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A188395 a(n) = [n*r +k*r]-[n*r]-[k*r], where r=1/sqrt(2), k=4, [ ]=floor. 3
1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1

COMMENTS

See A187950.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = [n*r+4*r]-[n*r]-[4*r], where r=1/sqrt(2).

MATHEMATICA

r=2^(-1/2); k=4;

t=Table[Floor[n*r+k*r]-Floor[n*r]-Floor[k*r], {n, 1, 220}]   (* A188395 *)

Flatten[Position[t, 0] ]   (* A188396 *)

Flatten[Position[t, 1] ]   (* A188397 *)

PROG

(PARI) for(n=1, 100, print1(floor((n+4)/sqrt(2)) - floor(n/sqrt(2)) - floor(4/sqrt(2)), ", ")) \\ G. C. Greubel, Apr 25 2018

(MAGMA) [Floor((n+4)/Sqrt(2)) - Floor(n/Sqrt(2)) - Floor(4/Sqrt(2)): n in [1..100]]; // G. C. Greubel, Apr 25 2018

CROSSREFS

Cf. A187950.

Sequence in context: A070178 A289748 A127254 * A266678 A267936 A263013

Adjacent sequences:  A188392 A188393 A188394 * A188396 A188397 A188398

KEYWORD

nonn

AUTHOR

Clark Kimberling, Mar 30 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 15:08 EST 2019. Contains 329979 sequences. (Running on oeis4.)