login
A188333
T(n,k)=Number of nondecreasing arrangements of n nonzero numbers in -(n+k-2)..(n+k-2) with sum zero
15
0, 0, 1, 0, 2, 2, 0, 3, 4, 10, 0, 4, 8, 20, 40, 0, 5, 12, 37, 86, 197, 0, 6, 18, 61, 166, 424, 980, 0, 7, 24, 94, 288, 828, 2128, 5142, 0, 8, 32, 136, 472, 1488, 4238, 11200, 27632, 0, 9, 40, 191, 726, 2519, 7836, 22563, 60372, 152191, 0, 10, 50, 257, 1076, 4050, 13694, 42593
OFFSET
1,5
COMMENTS
Table starts
......0......0......0.......0.......0.......0.......0........0........0
......1......2......3.......4.......5.......6.......7........8........9
......2......4......8......12......18......24......32.......40.......50
.....10.....20.....37......61......94.....136.....191......257......338
.....40.....86....166.....288.....472.....726....1076.....1534.....2130
....197....424....828....1488....2519....4050....6252.....9314....13479
....980...2128...4238....7836...13694...22786...36454....56314....84496
...5142..11200..22563...42593...76251..130453..214784...341988...528926
..27632..60372.122986..236130..431488..755434.1274786..2082546..3306612
.152191.333254.684809.1333130.2477726.4423012.7621670.12729304.20676601
LINKS
EXAMPLE
Some solutions for n=8 k=6
.-8...-9..-12..-11..-12...-9...-9...-6..-11...-8..-12..-12..-12...-9..-11...-9
.-5...-7...-7...-7...-5...-6...-8...-6...-7...-7...-6..-12..-10...-6..-10...-7
.-1...-6....1...-4...-2...-3...-3...-6...-4...-4...-4...-1...-6...-2...-4...-1
.-1....1....1...-4...-2...-3....3...-5...-4....1...-4....2....4....1...-4...-1
.-1....1....2....3...-2....2....3...-5....5....1....1....4....4....1....4....1
..3....2....3....6....4....4....3....5....6....3....2....4....5....3....6....5
..3....9....5....8....8....7....4...11....6....4...11....4....6....5....9....6
.10....9....7....9...11....8....7...12....9...10...12...11....9....7...10....6
CROSSREFS
Row 3 is A007590(n+1)
Sequence in context: A294598 A077264 A349344 * A283269 A201947 A098816
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Mar 28 2011
STATUS
approved