login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A188321 a(n) = [n*r] - [k*r] - [n*r-k*r], where r=1/sqrt(2), k=5, [ ]=floor. 3
0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1

COMMENTS

See A188014.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = [n*r]-[5*r]-[n*r-5*r], where r=1/sqrt(2).

MATHEMATICA

r=2^(-1/2); k=5;

t=Table[Floor[n*r]-Floor[(n-k)*r]-Floor[k*r], {n, 1, 220}]   (*A188321*)

Flatten[Position[t, 0]]  (*A188322*)

Flatten[Position[t, 1]]  (*A188323*)

PROG

(PARI) for(n=1, 100, print1(floor(n/sqrt(2)) - floor(5/sqrt(2)) - floor((n-5)/sqrt(2)), ", )) \\ G. C. Greubel, Apr 11 2018

(MAGMA) [Floor(n/Sqrt(2)) - Floor(5/Sqrt(2)) - Floor((n-5)/Sqrt(2)): n in [1..100]]; // G. C. Greubel, Apr 11 2018

CROSSREFS

Cf. A188014, A188322, A188323.

Sequence in context: A189476 A288752 A189706 * A257628 A203568 A286049

Adjacent sequences:  A188318 A188319 A188320 * A188322 A188323 A188324

KEYWORD

nonn

AUTHOR

Clark Kimberling, Mar 28 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 22 10:07 EDT 2019. Contains 321421 sequences. (Running on oeis4.)